hdu1269 有向图强连通 【Tarjan】(模板)
<题目链接>
题目大意:
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
Sample Output
Yes
No 解题分析:
有向图求强连通分量的裸题,下面用的是Tarjan算法。
#include <cstdio>
#include <cstring> const int M=+;
int n,m,cnt,tot,sumlink,top;
int dfn[M],Stack[M],head[M],low[M];
bool vis[M];
struct DEGE{
int to,next;
}edge[M];
void init(){
memset(vis,,sizeof(vis));
memset(dfn,,sizeof(dfn));
memset(head,-,sizeof(head));
cnt=tot=sumlink=top=;
//cnt为edge[]中边的编号,tot为dfs遍历到的时间,sumlink为连通分量的数量,top为栈顶元素序号
}
int min(int a,int b){return a<b?a:b;}
void add(int u,int v){ //链式前向星存图
edge[++cnt].to=v,edge[cnt].next=head[u];
head[u]=cnt;
}
void Tarjan(int u){
if(sumlink>)return; //如果连通分量>1,说明不符合题意,直接结束
dfn[u]=low[u]=++tot; //dfn为遍历的序号
Stack[++top]=u;//入栈
vis[u]=true; //标记该点在栈里
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(!dfn[v]){//如果这个点没有遍历过
Tarjan(v);
low[u]=min(low[u],low[v]);//将每个点的low值与根节点的low[]值相同
}
else if(vis[v])low[u]=min(low[u],dfn[v]);
//如果这个点在栈中,即这个联通块产生A->B->C->A的时候,那么这些元素相互可达,就将它们的low[]值置为根的dfn值(该连通块最先到达的点,即此处的dfn[])
}
if(dfn[u]==low[u]){//如果找到了这个连通分量的根节点
sumlink++;//连通分量数量+1
while(true){ //根据上面连通块的遍历过程来看,连通块中的所有点,必然在栈中是一块连续区域
int temp=Stack[top];
vis[temp]=false; //temp出栈,去除在栈内的标记
--top; //将该连通块在栈中的点排出
if(temp==u)break;//将该连通块中的根节点搜索完后(根节点==该连通块最早被dfs到的点==该连通块在栈的最底部的点)
}
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF,n||m){
init();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=;i<=n;i++){
if(!dfn[i])
Tarjan(i);
}
if(sumlink==)printf("Yes\n");
else printf("No\n");
}
return ;
}
2018-08-16
hdu1269 有向图强连通 【Tarjan】(模板)的更多相关文章
- HDU1269(有向图缩点模板题)
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU1269 有向图强连通分量
题目大意:问一个有向图是否任意两点在两个方向上互相连通. 有向图强连通分量定义:如果一个图中的任意两点在两个方向上都互相连通,则该图为强连通图.极大强连通图为有向图的强连通分量(注意是极大,不是最大. ...
- KS求有向图强连通分量模板
#include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ; *maxn; struct no ...
- 有向图强连通分量的Tarjan算法及模板
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...
- 图的连通性:有向图强连通分量-Tarjan算法
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...
- hdu1269(有向图强连通分量)
hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 【转】有向图强连通分量的Tarjan算法
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...
随机推荐
- luogu P1979 [NOIP2013] 华容道
传送门 这道题中,棋子的移动是要移动到空格上去,所以空格要在棋子旁边才能移动棋子;而棋子移动的方向由空格决定 所以我们可以记三维状态\(di_{i,j,k}\),表示状态为棋子在\((i,j)\),空 ...
- Git操作学习笔记
根据廖雪峰老师git教程学习整理 这里需要辨析一下概念.Github是代码托管平台,是协作的工具;而Git是版本控制工具.Git不需要联网,在本机就可以使用 集中式版本控制系统与分布式版本控制系统 S ...
- GHOST分区丢失只剩C盘
很多人装系统时会经常会使用GHOST来恢复自己的系统,当WINDOWS系统出现意外时,再用GHOST的“From Image to 分区”来对系统进行恢复,这样就可以省去繁琐耗时的重新安装操作系统的工 ...
- [ VB ] If 运算符 [ C# ] 条件运算符 (?:)
//保留了原文 ()为大概的意思 VB で使用していた IIf 関数の代わりに VB2008 からは If 演算子 を使用可能となった. また. C# では.条件演算子 (?:) で同等の記述が可 ...
- 64位Win7系统WMware安装Mac OS
1. 准备工作 l VMWare Workstation,我的版本是 l MAC OS安装光盘镜像文件,种子地址 http://www.kuaipan.cn/file/id_611 ...
- C++:explicit关键字
在C++中,如果一个类的构造函数只有一个形参,在这种情况下,可以直接将一个对应于构造函数参数类型的数据直接赋值给类变量,编译器在编译时会自动进行类型转换,将对应于构造函数参数类型的数据转换为类的对象, ...
- nginx简单介绍
代理服务器:一般是指局域网内部的机器通过代理服务器发送请求到互联网上的服务器,代理服务器一般作用在客户端.应用比如:GoAgent,FQ神器. 一个完整的代理请求过程为: 客户端首先与代理服务器创建连 ...
- C#面向对象(继承)
- Android app 在线更新那点事儿(适配Android6.0、7.0、8.0)
一.前言 app在线更新是一个比较常见需求,新版本发布时,用户进入我们的app,就会弹出更新提示框,第一时间更新新版本app.在线更新分为以下几个步骤: 1, 通过接口获取线上版本号,versionC ...
- linux下如何使用gdb调试
gdb是linux下非常好用的一个调试工具,虽然它是命令行模式的调试工具,但是它的功能强大到你无法想象,这里简单介绍下gdb下常用的命令. 首先编译生成可执行文件(这里的test.c是一个简单的求前n ...