传送门

想明白了其实不难 强行瞎扯

这题的限制比较烦,导致了一行行转移几乎不能做(吧)

那么一列列转移呢?

设\(f_{i,j,k}\)表示前\(i\)列,取\(j\)个,其中第\(i\)列取从上往下前\(k\)个的答案

因为要取到一个砖块,要把该砖块上方以及右上方的先取走,那么如果这一列取\(k\)个,下一列最少取\(k-1\)个;反过来,对于列\(i\),上一列的\(k\)的取值范围为\([1,k+1]\),是个前缀,可以前缀最大值优化

写个方程就没了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define inf 999999999 using namespace std;
const int N=50+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,a[N][N],f[N][N*N][N]; //dp用的数组同时用来记录前缀k最大值(懒) int main()
{
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
a[i][j]=a[i-1][j]+rd(); //前缀和存储
for(int i=1,t=n;i<=n;i++,t+=n-i+1,t=min(t,m))
for(int j=1;j<=t;j++)
{
f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]);
for(int k=1;k<=n-i+1;k++)
{
if(j-k>=0) f[i][j][k]=max(f[i][j][k],f[i-1][j-k][k+1]+a[k][i]);
}
for(int k=1;k<=n-i+1;k++) f[i][j][k]=max(f[i][j][k],f[i][j][k-1]);
}
printf("%d\n",max(f[n][m][0],f[n][m][1]));
return 0;
}

luogu P1437 [HNOI2004]尻♂砖块的更多相关文章

  1. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  2. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  3. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  4. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  5. P1437 [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  6. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  7. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  8. [HNOI2004] 打砖块

    1292. [HNOI2004] 打砖块 ★★   输入文件:brike.in   输出文件:brike.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 在一个凹槽中放 ...

  9. 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)

    题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...

随机推荐

  1. CSS等高布局的7种方式

    前面的话 等高布局是指子元素在父元素中高度相等的布局方式.等高布局的实现包括伪等高和真等高,伪等高只是看上去等高而已,真等高是实实在在的等高.本文将介绍边框模拟.负margin这两种伪等高以及tabl ...

  2. spring 文件加载 通过listener的类获取配置文件 并加载到spring容器中

  3. day29 __eq__ 比较

    本质上 "==" 调用的内部方法就是 __eq__() 正常情况下,两个名字相同的变量比较的是内存地址,内存地址当然是不一样的可以使用__eq__来改变成名字相同就相等 1 cla ...

  4. 基于Spring Security和 JWT的权限系统设计

    写在前面 关于 Spring Security Web系统的认证和权限模块也算是一个系统的基础设施了,几乎任何的互联网服务都会涉及到这方面的要求.在Java EE领域,成熟的安全框架解决方案一般有 A ...

  5. qq空间爬取

    QQ_spider github传送门 QQ空间spider总结 花了将近3天吧,完成了低配版qq空间的爬虫,终于能上线刚一波了,还是蛮期待的. 流程很简单,模拟登录 ==>采集==>保存 ...

  6. 前端学习 -- Html&Css -- 表单

    表单的作用就是用来将用户信息提交给服务器的,比如:百度的搜索框 注册 登录这些操作都需要填写表单. 使用form标签创建一个表单,form标签中必须指定一个action属性,该属性指向的是一个服务器的 ...

  7. 迅雷thunder://协议解密

    echo -n 'thunder://''Cg==' | sed 's?thunder://??' | base64 -d | sed 's/^AA//; s/ZZ$//' 将thunder://替换 ...

  8. 简单认识python(一)

    最近本宝宝被一部小说迷的神魂颠倒的,在网络上四处找免费的小说资源,一直哭唧唧的等待着每天更新的一章.实在是太可怜了,本宝宝决定自己学python,自己抓包小说. 既然知道目的地了,那就和本宝宝一起打怪 ...

  9. 和我一起使用postcss+gulp进行vw单位的移动端的适配

    随着iphoneX的出现,新的一轮适配大法应该又出现了吧?不论是使用flex布局或者媒体查询,好似都不能完全解决新加的刘海带来的适配问题. 但是有一个单位vw就神奇的解决了这个问题.vw和vh是相对于 ...

  10. 【codeforces】【Round#523D】TV shows

    题意:n个节目,每个节目的播放时间为[li,ri],你需要选择一些电视机全部播放这些节目,一台电视机不能同时播放多个节目,选择一个新的电视机代价为x , 如果某台电视机的使用时间为[Li,Ri]需要付 ...