传送门

想明白了其实不难 强行瞎扯

这题的限制比较烦,导致了一行行转移几乎不能做(吧)

那么一列列转移呢?

设\(f_{i,j,k}\)表示前\(i\)列,取\(j\)个,其中第\(i\)列取从上往下前\(k\)个的答案

因为要取到一个砖块,要把该砖块上方以及右上方的先取走,那么如果这一列取\(k\)个,下一列最少取\(k-1\)个;反过来,对于列\(i\),上一列的\(k\)的取值范围为\([1,k+1]\),是个前缀,可以前缀最大值优化

写个方程就没了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define inf 999999999 using namespace std;
const int N=50+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,a[N][N],f[N][N*N][N]; //dp用的数组同时用来记录前缀k最大值(懒) int main()
{
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
a[i][j]=a[i-1][j]+rd(); //前缀和存储
for(int i=1,t=n;i<=n;i++,t+=n-i+1,t=min(t,m))
for(int j=1;j<=t;j++)
{
f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]);
for(int k=1;k<=n-i+1;k++)
{
if(j-k>=0) f[i][j][k]=max(f[i][j][k],f[i-1][j-k][k+1]+a[k][i]);
}
for(int k=1;k<=n-i+1;k++) f[i][j][k]=max(f[i][j][k],f[i][j][k-1]);
}
printf("%d\n",max(f[n][m][0],f[n][m][1]));
return 0;
}

luogu P1437 [HNOI2004]尻♂砖块的更多相关文章

  1. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  2. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  3. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  4. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  5. P1437 [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  6. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  7. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  8. [HNOI2004] 打砖块

    1292. [HNOI2004] 打砖块 ★★   输入文件:brike.in   输出文件:brike.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 在一个凹槽中放 ...

  9. 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)

    题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...

随机推荐

  1. ubuntu 程序后台运行几个方法

    51 1. 程序后加上“&” ,即 “./myjob &”, 将命令放入到一个作业队列中,可以用命令“jobs” 查看 2. 将1中的命令放在 “()”中, 即 “(./myjob & ...

  2. hdu 4417 Super Mario (主席树)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题意: 给你段长为n的序列,有q个询问,每次询问区间[l.r]内有多少个数小于等于k 思路: 之前用 ...

  3. day13 生成器 三元运算 列表解析

    本质上来说生成器迭代器都是一种数据类型,如果你直接打印生成器是无法得出值的,会得到一串内存地址,即一个对象想要得到生成器的值必须要用for或者next,list等来获取 生成器生成器就是一个可迭代对象 ...

  4. mysql Packet for query is too large (2036 > 1024). You can change this value on the server by setting the max_allowed_packet' variable.

    解决方法: 打开控制台,输入下面语句,执行 set global max_allowed_packet = 20*1024*1024; 网上说要重启 mysql server, 我是执行完后不用重启就 ...

  5. 51Nod - 1107 斜率小于0的连线数量

    二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线的数量. 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y).例如:(2,3) (3,4) (1,5) (4, ...

  6. BZOJ 4499: 线性函数

    4499: 线性函数 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 177  Solved: 127[Submit][Status][Discuss] ...

  7. 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)

    [BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...

  8. hdu3072 Intelligence System (最小树形图?)

    题意:给一个有向图,问要从0号点能到达所有点所需要经过路径的最小权值和是多少,然而,若两点强联通,则这两点互相到达不需要花费.保证0号点能到达所有点 tarjan缩点以后直接取每个点入边中花费最小的即 ...

  9. scp 的用法

    scp用于在linux下远程拷贝文件, 与rsync相比,scp不占资源,不会提高多少系统负荷,虽然 rsync比scp会快一点,但当小文件众多的情况下,rsync会导致硬盘I/O非常高,而scp基本 ...

  10. NodeJS - Express 4.0错误:Cannot read property 'Store' of undefined

    按着<NodeJS开发指南>里的第五章建立microblog的例子操作,使用node.js 的express框架配置将session存储到mongodb时出错:TypeError: Can ...