J

  为了满足日益增长的业务变化,京东的京麦团队在京东大数据平台的基础上,采用了hadoop等热门的开源大数据计算引擎,打造了一款为京东运营和产品提供决策性的数据类产品-北斗平台。

  一、Hadoop的应用业务分析

  大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。

  目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:

  Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。

  Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复查询,此外还融合数据仓库,流处理和图形计算等多种计算范式。Spark构建在HDFS上,能与Hadoop很好的结合。它的RDD是一个很大的特点。

  Storm用于处理高速、大型数据流的分布式实时计算系统。为Hadoop添加了可靠的实时数据处理功能

  Hadoop是使用Java编写,允许分布在集群,使用简单的编程模型的计算机大型数据集处理的Apache的开源框架。 Hadoop框架应用工程提供跨计算机集群的分布式存储和计算的环境。 Hadoop是专为从单一服务器到上千台机器扩展,每个机器都可以提供本地计算和存储。

  Hadoop适用于海量数据、离线数据和负责数据,应用场景如下:

  场景1:数据分析,如京东海量日志分析,京东商品推荐,京东用户行为分析

  场景2:离线计算,(异构计算+分布式计算)天文计算

  场景3:海量数据存储,如京东的存储集群

  基于京麦业务三个实用场景

  京麦用户分析

  京麦流量分析

  京麦订单分析

  都属于离线数据,决定采用Hadoop作为京麦数据类产品的数据计算引擎,后续会根据业务的发展,会增加Storm等流式计算的计算引擎,下图是京麦的北斗系统架构图:

  

  (图一)京东北斗系统

  二、浅谈Hadoop的基本原理

  Hadoop分布式处理框架核心设计

  HDFS :(Hadoop Distributed File System)分布式文件系统

  MapReduce: 是一种计算模型及软件架构

  2.1 HDFS

  HDFS(Hadoop File System),是Hadoop的分布式文件存储系统。

  将大文件分解为多个Block,每个Block保存多个副本。提供容错机制,副本丢失或者宕机时自动恢复。默认每个Block保存3个副本,64M为1个Block。将Block按照key-value映射到内存当中。

  

  (图二)数据写入HDFS

  

  (图三)HDFS读取数据

  2.2 MapReduce

  MapReduce是一个编程模型,封装了并行计算、容错、数据分布、负载均衡等细节问题。MapReduce实现最开始是映射map,将操作映射到集合中的每个文档,然后按照产生的键进行分组,并将产生的键值组成列表放到对应的键中。化简(reduce)则是把列表中的值化简成一个单值,这个值被返回,然后再次进行键分组,直到每个键的列表只有一个值为止。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个分治算法。

  算法:

  MapReduce计划分三个阶段执行,即映射阶段,shuffle阶段,并减少阶段。

  映射阶段:映射或映射器的工作是处理输入数据。一般输入数据是在文件或目录的形式,并且被存储在Hadoop的文件系统(HDFS)。输入文件被传递到由线映射器功能线路。映射器处理该数据,并创建数据的若干小块。

  减少阶段:这个阶段是:Shuffle阶段和Reduce阶段的组合。减速器的工作是处理该来自映射器中的数据。处理之后,它产生一组新的输出,这将被存储在HDFS。

  

  2.3 HIVE

  hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,这套SQL 简称HQL。使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据。而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。

  

  (图五)HIVE体系架构图

  由上图可知,hadoop和mapreduce是hive架构的根基。Hive架构包括如下组件:CLI(command line interface)、JDBC/ODBC、Thrift Server、WEB GUI、metastore和Driver(Complier、Optimizer和Executor)。

  三、Hadoop走过来的那些坑

  进行HIVE操作的时候,HQL写的不当,容易造成数据倾斜,大致分为这么几类:空值数据倾斜、不同数据类型关联产生数据倾斜和Join的数据偏斜。只有理解了Hadoop的原理,熟练使用HQL,就会避免数据倾斜,提高查询效率。

Hadoop大数据分析应用场景的更多相关文章

  1. discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现

    discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现http://www.aboutyun.com/thread-8637-1-1.html(出处: about云 ...

  2. 大数据分析系统Hadoop的13个开源工具

    Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo!DougCutting根据Google发布的学术论文研究而来. 用户可以在不了解分布式底层细节的 ...

  3. 《Hadoop金融大数据分析》读书笔记

    <Hadoop金融大数据分析> Hadoop for Finance Essentials 使用Hadoop,是因为数据量大数据量如此之多,以至于无法用传统的数据处理工具和应用来处理的数据 ...

  4. 使用Kylin构建企业大数据分析平台的4种部署方式

    本篇博客重点介绍如何使用Kylin来构建大数据分析平台.根据官网介绍,其实部署Kylin非常简单,称为非侵入式安装,也就是不需要去修改已有的 Hadoop大数据平台.你只需要根据的环境下载适合的Kyl ...

  5. 《基于Apache Kylin构建大数据分析平台》

    Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者 ...

  6. 《开源大数据分析引擎Impala实战》目录

    当当网图书信息: http://product.dangdang.com/23648533.html <开源大数据分析引擎Impala实战>目录 第1章  Impala概述.安装与配置.. ...

  7. 除Hadoop大数据技术外,还需了解的九大技术

    除Hadoop外的9个大数据技术: 1.Apache Flink 2.Apache Samza 3.Google Cloud Data Flow 4.StreamSets 5.Tensor Flow ...

  8. 用Storm轻松实时大数据分析【翻译】

    原文地址 简单易用,Storm让大数据分析变得轻而易举. 如今,公司在日常运作中经常会产生TB(terabytes)级的数据.数据来源包括从网络传感器捕获的,到Web,社交媒体,交易型业务数据,以及其 ...

  9. 使用Storm实现实时大数据分析

    摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Sto ...

随机推荐

  1. AdminLTE模板使用

    AdminLTE介绍: AdminLTE是一款建立在bootstrap和jquery之上的开源的模板主题工具,它提供了一系列响应的,可重复使用的组件,并内置了多个模板页面;同时自适应多种屏幕分辨率,兼 ...

  2. Docker学习笔记之使用 Docker Compose 管理容器

    0x00 概述 通过之前的介绍,我们已经基本掌握了构建.运行容器的方法,但这还远远不够,由于 Docker 采用轻量级容器的设计,每个容器一般只运行一个软件,而目前绝大多数应用系统都绝不是一个软件所能 ...

  3. JDK常用命令(一)jps、jstat

    曾几何时,我们学习java都不再研究jdk而直接使用IDEA.eclipse和Netbeans,仿佛我们就认为我们的程序是这些编辑器编译出来的,这时多么可笑.殊不知,编辑器就是方便我们编辑开发的,而真 ...

  4. HTTP小幺鸡接口管理工具安装与配置说明

    http://www.xiaoyaoji.cn/doc/TxybXPTdx 小幺鸡接口管理工具安装说明 使用可以参考:https://blog.csdn.net/qincidong/article/d ...

  5. 13:python-ldap

    1.1 python-ldap 基本使用 11111111111111111111

  6. nagios监控oracle 表空间

    oracle表空间满的危害以及处理方式见我的博客链接https://www.cnblogs.com/-abm/p/9764803.html 除此之外我们还需要对表空间实时监控,这样就可以及时了解表空间 ...

  7. 问题:oracle 12c rac数据库服务器的home目录丢失问题解决2018-06-25 18:30

    问题原因:是由于运维粗心,在缩容/home(此目录下挂载了逻辑卷lv_home)时没有先缩小文件系统(resize2fs)也没有备份,导致home数据损坏,重启时系统无法正常启动 解决方案:跳过此ho ...

  8. centOS 安装 Webmin

    http://www.webmin.com/rpm.html 修改配置文件在这里: /etc/webmin/miniserv.conf

  9. python引入模块

    1.自定义模块model_1.py def add(a,b): return a+b def dec(a,b): return a-b HEAD = "55AA" 2.程序代码 i ...

  10. Java后台要看的书

    推荐一个 搜书的网站,挺好用的 鸠摩搜书 Java基础 <Head first Java> (入门用) <Java 编程思想> <Java核心技术卷> 并发 < ...