one-hot映射时,如何选取TOPN作为每一个词承载的word2vec的信息?

我们已经知道,对于这种例子:

怎么绑定手机号?

怎么关联手机号?

他们的相似度取决于绑定和关联这两个词如何相似。

#取top2词的相似度
vec_i = np.array([1, 0.73, 0.71, 0])
vec_j = np.array([0.71, 0.73, 1, 0.71]) dist = linalg.norm(vec_i - vec_j)
sim = 1.0 / (1.0 + dist) print(sim)
0.549468959038795 #取top1词的相似度
vec_i = np.array([ 1, 0.73, 0 ])
vec_j = np.array([ 0.71, 0 , 1 ] )
dist = linalg.norm(vec_i - vec_j)
sim = 1.0 / (1.0 + dist) print(sim)
0.44021580019602347 #取top3词的相似度
vec_i = np.array([ 1, 0.73, 0.71, 0.69, 0])
vec_j = np.array([0.71, 0.668, 1, 0, 0.71])
dist = linalg.norm(vec_i - vec_j)
sim = 1.0 / (1.0 + dist) print(sim)
0.48229348920534326 在这种情况下,选取TOP2相似度是最高的,可以很好的近似匹配。思想是,在取的TOPN尽可能少的情况下,让TOPN里,相同的词出现的尽可能多,有助于提高相似度。可是那对于不相似的句子呢? 我们应该让相似的句子,相似度更高,不相似的句子,相似度更低,拉开差距。 方案一:按照原来的TOP3+similarity 怎么 怎样 如何 怎么样 支付 付款 微信支付 收款 打印 打 印 打出
怎么支付 [ 1, 0.85, 0.83, 0.70, 1, 0.77, 0.72, 0.67, 0, 0, 0, 0]
如何支付 [0.83, 0.87, 1, 0.63, 1, 0.77, 0.72, 0.67, 0, 0, 0, 0]
如何打印 [0.83, 0.87, 1, 0.63, 0, 0, 0, 0, 1, 0.78, 0.69, 0.69] 怎么支付-如何支付=0.7992345674654612
如何支付-如何打印=0.3064740995892663
怎么支付-如何打印=0.3051741090737826 方案二:如果两个句子之间,映射完之后有相同词的,相似度保留,如果没有相同词,那么就令那个词为1,这样可以有效的拉开相似度句子,和不相似的句子之间的相似度差距。
              怎么     怎样     如何    怎么样    支付    付款    微信支付     收款     打印     打    印    打出
怎么支付      [ 1,     0.85,   0.83,   0.70,    1,     0.77,  0.72,      0.67,    0,      0,    0,    0]
如何支付      [0.83,    0.87,    1,    0.63,    0,       0,     0,        0,      1,      1,     1,   1]
(这是第一对)
               怎么     怎样     如何    怎么样    支付    付款    微信支付     收款     打印     打    印    打出

如何支付        [0.83,    0.87,    1,    0.63,     1,       1,     1,        1,    0,      0,    0,    0]
如何打印        [0.83,    0.87,    1,    0.63,    0,        0,     0,        0,     1,      1,    1,   1]

             怎么     怎样     如何    怎么样    支付    付款    微信支付     收款     打印     打    印    打出

怎么支付      [ 1,     0.85,   0.83,   0.70,    1,     0.77,  0.72,      0.67,    0,      0,    0,    0]
如何打印      [0.83,    0.87,    1,    0.63,    0,        0,     0,        0,     1,    0.78,  0.69,   0.69]

怎么支付-如何支付=0.7992345674654612
如何支付-如何打印=0.2612038749637414
怎么支付-如何打印=0.26044652136360963
结果:明显的降低了不同意思的句子之间的差距,对于不同的句子之间,进行了相似度对比增强。对于原本就很相似的句子,影响不大。

不过如果我们要这么做,需要多做一步,就是对于已经生成的两个句子向量做比对,将没有同时出现的词,做1值处理。
而且具体效果,需要我们实际测试才知道。

one-hot句子向量 对比度增强的更多相关文章

  1. opencv----彩色图像对比度增强

    图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法. 直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法. 直方图拉伸是通过对比度拉伸对直方图进行调整,从而“ ...

  2. ISP图像调试工程师——对比度增强(熟悉图像预处理和后处理技术)

    经典对比度增强算法: http://blog.csdn.net/ebowtang/article/details/38236441

  3. (二)OpenCV-Python学习—对比度增强

    ·对于部分图像,会出现整体较暗或较亮的情况,这是由于图片的灰度值范围较小,即对比度低.实际应用中,通过绘制图片的灰度直方图,可以很明显的判断图片的灰度值分布,区分其对比度高低.对于对比度较低的图片,可 ...

  4. 基于Doc2vec训练句子向量

    目录 一.Doc2vec原理 二.代码实现 三.总结   一.Doc2vec原理 前文总结了Word2vec训练词向量的细节,讲解了一个词是如何通过word2vec模型训练出唯一的向量来表示的.那接着 ...

  5. opencv —— equalizeHist 直方图均衡化实现对比度增强

    直方图均匀化简介 从这张未经处理的灰度图可以看出,其灰度集中在非常小的一个范围内.这就导致了图片的强弱对比不强烈. 直方图均衡化的目的,就是把原始的直方图变换为在整个灰度范围(0~255)内均匀分布的 ...

  6. SSE图像算法优化系列十九:一种局部Gamma校正对比度增强算法及其SSE优化。

    这是一篇2010年比较古老的文章了,是在QQ群里一位群友提到的,无聊下载看了下,其实也没有啥高深的理论,抽空实现了下,虽然不高大上,还是花了点时间和心思优化了代码,既然这样,就顺便分享下优化的思路和经 ...

  7. 对比度增强(二):直方图正规划与伽马变换 cv.normal()函数使用及原理

    直方图正规化: 图像为I,宽为W,高为H,I(r,c)代表I的第r行第c列的灰度值:输出图像记为O,为使得输出图像的灰度值在[Omin,Omax]范围里,可用如下公式:                 ...

  8. 通过灰度线性映射增强图像对比度实现PS中的色阶

    通过灰度线性映射增强图像对比度 Halcon中如何通过灰度线性映射增强图片对比度呢?不急,我先讲点其他的. 如果你用过Photoshop,那么想必对增强图像的对比度很熟悉.在Photoshop中,我们 ...

  9. 将句子表示为向量(上):无监督句子表示学习(sentence embedding)

    1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embeddin ...

随机推荐

  1. RandomForest中的feature_importance

    随机森林算法(RandomForest)的输出有一个变量是 feature_importances_ ,翻译过来是 特征重要性,具体含义是什么,这里试着解释一下. 参考官网和其他资料可以发现,RF可以 ...

  2. jQuery学习之二

    jQuery对象获取方法:var $cr=$("#cr"); //jQuery方法获取的是一个·对象数组. var cr=$cr[0] // var cr=$cr.get(0); ...

  3. ModelAttribue注解的使用

    Spring中有很多注解,如RequestParam,PathVarible,SesstionAttribute,这些在开发是多尝试一下,可能用得到,ModelAttribute用的还挺多,可以以此为 ...

  4. OpenCV 1.0在VC6下安装与配置(附测试程序)

    步骤: 1 安装Visual C++ 6.0         2 安装OpenCV 1.0        3 配置Windows环境变量         4 配置Visual C++ 6.0     ...

  5. STL学习笔记--排序算法

    排序算法 C++ STL 的排序算法(Sorting algorithms)是一组将无序序列排列成有序序列的模板函数或与排序相关的模板函数,提供了排序.折半搜索.归并.集合操作.堆操作.最值求解.字典 ...

  6. 精彩看点 | GIAC大会PPT+视频合集全量放送!

    GIAC是中国互联网技术领域的行业盛事,每年从互联网架构最热门的系统架构设计.人工智能.机器学习.工程效率.区块链.分布式架构等领域甄选前沿有典型代表的技术创新及研发实践的架构案例,分享他们在本年度最 ...

  7. 宝宝刷 leetcode

    12/3 1.Two Sum Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, retur ...

  8. AudioUnit录音和播放同时进行的一些注意点

    录音(播放)和暂停 -(void)start { self.soundTotalLength = 0.0f; if (!self.unitHaveStart) { NSError *error = n ...

  9. angular ajax请求 结果显示显示两次的问题

    angular 项目中,由于用到ajax 请求,结果显示如下情况 同样的接口,显示两次,其中第一次请求情况为 request method 显示为opttions 第二次的情况是 为啥会出现如此的情况 ...

  10. [ovs] ovs开启日志debug

    如题 [root@vrouter1 ~]# ovs-appctl vlog/set netdev:file:dbg [root@vrouter1 ~]# ovs-appctl vlog/set net ...