思路

神仙概率dp

由于期望的线性性质,能够想到最后要求的期望价值就是把每个卡牌发动的概率\(g_i\)乘上伤害\(val_i\)之后加到一起

然后怎么求\(g_i\)呢,肯定是要dp的

我想了例如dp[i][j]表示第i张纸牌还有j次的考虑机会,dp[i][j]表示第i轮牌j发动的概率,但是都没有想出转移

发现每个牌一局游戏只能够发动一次,而且前面发动一次之后后面的纸牌不能再发动

然后发现第0张纸牌发动的概率是\(p[0]=(1-(1-k[0])^r)\)(总概率-每一回合都不放的概率为有1回合放的概率)

第一张纸牌发动会受到第0张纸牌的影响,如果第0张纸牌不发动,第一张发动的概率就是\(p[1]=(1-(1-k[1])^r)\),如果第0张发动,则概率为\(p[1]=(1-(1-k[1])^{r-1})\),每一张牌发动的概率只依赖于前面,且只依赖于有几张纸牌发动,所以可以把有几张纸牌发动压进状态里,然后就可以dp了

设dp[i][j]表示前i张纸牌,有j张发动的概率

决策自然是有两种:第i张发动/第i张不发动

如果第i张发动,则前面i-1张中有j-1张发动,第i张发动的概率为\(p[i]=(1-(1-k[i])^{r-j+1})\)

如果第i张不发动,则前面i-1张中有j张发动,第i张不发动的概率为\(p[i]=(1-k[i])^{r-j}\)

然后就得出状态转移方程为\(dp[i][j]=dp[i-1][j-1]*(1-(1-k[i])^{r-j+1})+dp[i-1][j]*(1-k[i])^{r-j}\)

所以\(g_i=\sum_{j=0}^{min(i-1,r)}dp[i-1][j]*(1-(1-k[i])^{r-j})\)

然后没了

注意多组数据,数组要清空

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,val[230];
double k[230],dp[230][140],g[230];
double pow(double a,int b){
double ans=1;
while(b){
if(b&1)
ans=(ans*a);
a=(a*a);
b>>=1;
}
return ans;
}
int main(){
// freopen("2.in","r",stdin);
// freopen("test.out","w",stdout);
scanf("%d",&T);
while(T--){
double ans=0;
memset(val,0,sizeof(val));
memset(k,0,sizeof(k));
memset(dp,0,sizeof(dp));
memset(g,0,sizeof(g));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lf %d",&k[i],&val[i]);
}
// printf("ok\n");
dp[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=min(i,m);j++){
if(j>0){
dp[i][j]+=dp[i-1][j-1]*(1-pow((1-k[i]),m-j+1));
}
dp[i][j]+=dp[i-1][j]*(pow(1-k[i],m-j));
}
// printf("ok\n");
for(int i=1;i<=n;i++)
for(int j=0;j<=min(i-1,m);j++)
g[i]+=dp[i-1][j]*(1-pow(1-k[i],m-j));
for(int i=1;i<=n;i++)
ans=ans+g[i]*val[i];
printf("%.10lf\n",ans);
}
return 0;
}

P3239 [HNOI2015]亚瑟王的更多相关文章

  1. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  2. 洛谷P3239 [HNOI2015]亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  3. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  4. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  5. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  6. Luogu P3239 [HNOI2015]亚瑟王

    题目链接 \(Click\) \(Here\) 期望神题.最开始一直尝试推朴素一点的,逻辑上的\(DP\)式子,后来发现一直出锅,可能是我的式子没容斥对... 题解中给出的想法是这样的: 首先,如果直 ...

  7. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  8. 洛谷P3239 [HNOI2015]亚瑟王(期望dp)

    传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...

  9. 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)

    题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...

随机推荐

  1. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

    https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一 ...

  2. uva 10163 Storage Keepers

    题意: 有n个仓库,m个人,一个仓库只能由一个人托管,每个人可以托管多个仓库. 每个人有一个能力值a,如果说他托管了k个仓库,那么这些仓库的安全值都是a/k. 雇佣一个人的花费也是a. 如果一个仓库没 ...

  3. codeforces 957 C Three-level Laser

    题意: 说的是一个电子云的三种状态,但是这不重要. 简单来说,就是在一个升序的序列中找三个数x,y,z,x和z的值之差不超过u,然后使得(z – y) / (z – x)最大. 思路: 使得(z – ...

  4. 20155228 实验三 敏捷开发与XP实践

    20155228 实验三 敏捷开发与XP实践 实验内容 1. XP基础 2. XP核心实践 3. 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)>& ...

  5. 把本地windows系统上的mysql数据库移到linux系统服务器上,mysql数据库拒绝访问

    Mysql连接报错 原因是:远程服务器不允许你的其他程序访问它的数据库.所以,我们要对远程服务器进行设置,使它允许你进行连接. 步骤:一.进入mysql客户端,输入:use mysql; 二.输入:s ...

  6. 【2017-2-24】C#循环嵌套,跳转语句,迭代穷举,异常语句,while循环

    循环嵌套 在一个循环体语句中包含另一个循环语句: 99乘法表 ; i <= ; i++) { ; j <= i; j++) { Console.Write(i+"x"+ ...

  7. 使用QFileDiaglog实战designer快速开发

    今天遇到一个大坑很久才解决 使用designer开发出图形界面转换为py文件后,使用QFileDialog对话框第一个参数一定要是当前窗口组件,否则程序直接奔溃(坑:能运行不报错但奔溃) def ge ...

  8. activiti 报 next dbid

    记录一下吧. 今天将生产环境的几个服务节点改成集群模式,其中包含activiti审批服务节点,其中各个服务几点间数据通信采用MQ(与本文无关). 然后报出如题错误. 究其原因就是,在启动activit ...

  9. 加密对象到locastorage / 从 locastorage解密对象

    var obj={name:"致远",age:21,address:"江西上饶XXXX",hobby:"看书,编程"};//用中文 记得加e ...

  10. Codeforce 294A - Shaass and Oskols (模拟)

    Shaass has decided to hunt some birds. There are n horizontal electricity wires aligned parallel to ...