There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
4
1 2
1 3
2 4
output
1.500000000000000
input
5
1 2
1 3
3 4
2 5
output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.


  题目大意 给定一棵有n个节点的树,某个人骑着一匹等概率走向任意相连的未经过节点的马从1号点开始旅行,当到某个点的无法移动旅行结束。求期望的旅行长度(每条边的长度为1)。

  显然到了某个点就不能到它的父节点。所以考虑动态规划。

  f[i]表示当到达节点i后,期望还能走的步数。显然某个叶节点的f值为0.

  现在考虑转移。

  显然是每个子节点的f值加1再乘走到这个节点的概率。

Code

 /**
* Codeforces
* Problem#839C
* Accepted
* Time: 78ms
* Memory: 11800k
*/
#include <bits/stdc++.h>
using namespace std; int n;
vector<int> *g;
double *f; inline void init() {
scanf("%d", &n);
g = new vector<int>[(n + )];
f = new double[(n + )];
for(int i = , u, v; i < n; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} void dfs(int node, int fa) {
f[node] = ;
int count = ;
for(int i = ; i < (signed)g[node].size(); i++)
if(g[node][i] != fa)
count++;
if(!count) return;
double P = 1.0 / count;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa) continue;
dfs(e, node);
f[node] += (f[e] + ) * P;
}
} inline void solve() {
printf("%.12lf", f[]);
} int main() {
init();
dfs(, );
solve();
return ;
}

Codeforces 839C Journey - 树形动态规划 - 数学期望的更多相关文章

  1. CodeForces 839C - Journey | Codeforces Round #428 (Div. 2)

    起初误以为到每个叶子的概率一样于是.... /* CodeForces 839C - Journey [ DFS,期望 ] | Codeforces Round #428 (Div. 2) */ #i ...

  2. Codeforces 839C Journey【DFS】

    C. Journey time limit per test:2 seconds memory limit per test:256 megabytes input:standard input ou ...

  3. Codeforces 1000G Two-Paths 树形动态规划 LCA

    原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...

  4. Codeforces Round #259(div2)C(数学期望)

    数学题. 关键是求最大值为k时有多少种情况,结果是kn-(k-1)n-1.可以这么想:每一次都从1至k里选,共kn种,这里需要再减去每一次都从1至k-1里面选的情况.当然也可以分类计数法:按出现几次k ...

  5. CodeForces Div1: 995 D. Game(数学期望)

    Allen and Bessie are playing a simple number game. They both know a function f:{0,1}n→Rf:{0,1}n→R, i ...

  6. [Codeforces 839C] Journey

    [题目链接] http://codeforces.com/contest/839/problem/C [算法] 概率DP 时间复杂度 : O(N) [代码] #include<bits/stdc ...

  7. Codeforces 912 质因数折半 方格数学期望

    A B #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #d ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

随机推荐

  1. Spark_JGroupByKey

    package core.java; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf ...

  2. GE与POST方法区别

    1.用途. GET方法一般用于查询并获取信息,这意味着它是幂等的(对同一个url的多个请求,返回结果完全一样),因为没有修改资源状态,所以它是安全的.而POST一般用于更新资源信息,既不是幂等,也不是 ...

  3. memory consistency

    目前的计算机系统中,都是shared memory结构,提供统一的控制接口给软件, shared memory结构中,为了memory correctness,可以将问题分为:memory consi ...

  4. Python全栈-day6-day7-字符编码和文件处理

    一.字符编码 1.编码基础 定义:人在使用计算机时,使用的是人类能够读懂的字符,使用者必须通过一张字符和数字间的相对应关系表实现人机交互,这一系列标准称为字符编码 Python应用中解决核心字符串乱码 ...

  5. Vue系列之 => 组件切换

    组件切换方式一 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  6. GCD (RMQ + 二分)

    RMQ存的是区间GCD,然后遍历 i: 1->n, 然后不断地对[i, R]区间进行二分求以i为起点的相同gcd的区间范围,慢慢缩减区间. #include<bits/stdc++.h&g ...

  7. MVC中视图界面设置Checkbox

    今天是六一儿童节,来谈谈Checkbox,前面的博客已经提到了关于单选.多选.反选.全选等问题的处理,这里作一下补充说明. 全选/反选 <td width="5%">& ...

  8. 20165305 苏振龙《Java程序设计》第六周学习总结

    第八章知识点 熟练掌握String类的常用方法. 掌握String类的和StringBuffer类的不同,以及二者之间的联系. 使用StringTokenizer,Scannner类分析字符串,获取字 ...

  9. mysql安装使用

    linux系统 mysql-5.7.14-linux.zip部署包支持在CentOS 6.x/7.x 服务器硬盘大小要求 a) /data/mysql_data  如果存在该独立分区,要求该分区 &g ...

  10. html div重叠问题,原因分析和处理

    1.现象 <!DOCTYPE html > <html> <head> <meta http-equiv="Content-Type" c ...