There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
4
1 2
1 3
2 4
output
1.500000000000000
input
5
1 2
1 3
3 4
2 5
output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.


  题目大意 给定一棵有n个节点的树,某个人骑着一匹等概率走向任意相连的未经过节点的马从1号点开始旅行,当到某个点的无法移动旅行结束。求期望的旅行长度(每条边的长度为1)。

  显然到了某个点就不能到它的父节点。所以考虑动态规划。

  f[i]表示当到达节点i后,期望还能走的步数。显然某个叶节点的f值为0.

  现在考虑转移。

  显然是每个子节点的f值加1再乘走到这个节点的概率。

Code

 /**
* Codeforces
* Problem#839C
* Accepted
* Time: 78ms
* Memory: 11800k
*/
#include <bits/stdc++.h>
using namespace std; int n;
vector<int> *g;
double *f; inline void init() {
scanf("%d", &n);
g = new vector<int>[(n + )];
f = new double[(n + )];
for(int i = , u, v; i < n; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} void dfs(int node, int fa) {
f[node] = ;
int count = ;
for(int i = ; i < (signed)g[node].size(); i++)
if(g[node][i] != fa)
count++;
if(!count) return;
double P = 1.0 / count;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa) continue;
dfs(e, node);
f[node] += (f[e] + ) * P;
}
} inline void solve() {
printf("%.12lf", f[]);
} int main() {
init();
dfs(, );
solve();
return ;
}

Codeforces 839C Journey - 树形动态规划 - 数学期望的更多相关文章

  1. CodeForces 839C - Journey | Codeforces Round #428 (Div. 2)

    起初误以为到每个叶子的概率一样于是.... /* CodeForces 839C - Journey [ DFS,期望 ] | Codeforces Round #428 (Div. 2) */ #i ...

  2. Codeforces 839C Journey【DFS】

    C. Journey time limit per test:2 seconds memory limit per test:256 megabytes input:standard input ou ...

  3. Codeforces 1000G Two-Paths 树形动态规划 LCA

    原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...

  4. Codeforces Round #259(div2)C(数学期望)

    数学题. 关键是求最大值为k时有多少种情况,结果是kn-(k-1)n-1.可以这么想:每一次都从1至k里选,共kn种,这里需要再减去每一次都从1至k-1里面选的情况.当然也可以分类计数法:按出现几次k ...

  5. CodeForces Div1: 995 D. Game(数学期望)

    Allen and Bessie are playing a simple number game. They both know a function f:{0,1}n→Rf:{0,1}n→R, i ...

  6. [Codeforces 839C] Journey

    [题目链接] http://codeforces.com/contest/839/problem/C [算法] 概率DP 时间复杂度 : O(N) [代码] #include<bits/stdc ...

  7. Codeforces 912 质因数折半 方格数学期望

    A B #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #d ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

随机推荐

  1. netcore webapi统一配置跨域问题

    修改startup类中的configure方法

  2. report源码分析——report_handle和report_server和report_catcher

    report_handle主要实现对message的action,severity,file的设置,然后将message传递给server: 主要的function有两个:initial和proces ...

  3. STL之List容器

    1.List容器 1) list是一个双向链表容器,可高效地进行插入删除元素. 2)list不可以随机存取元素,所以不支持at.(pos)函数与[]操作符.It++(ok) it+5(err) 3)头 ...

  4. java springboot activemq 邮件短信微服务,解决国际化服务的国内外兼容性问题,含各服务商调研情况

    java springboot activemq 邮件短信微服务,解决国际化服务的国内外兼容性问题,含各服务商调研情况 邮件短信微服务 spring boot 微服务 接收json格式参数 验证参数合 ...

  5. 1069: 统计字符gets函数

    题目描述 编制程序,统计文本stdin中字符$出现的次数,并将结果写入文件stdout 输入 字符文本 输出 $次数 样例输入 as$dfkjhkjkjdhf asdfkj$lskdfj werijw ...

  6. Codeforces 841A - Generous Kefa

    题目链接:http://codeforces.com/problemset/problem/841/A One day Kefa found n baloons. For convenience, w ...

  7. FAQ About WOYO PDR007 Dent Removal Heat Induction System

    WOYO PDR 007 is a dent repair tool for auto maintence. WOYO PDR007 Auto Body Paintless Dent Repair K ...

  8. What Would you Find out about MS908CV ?

    The Autel MaxiSYS commercial car diagnostics scan device, No. MS908CV, performs increased technique ...

  9. 关于数据库主从表、主键PRIMARY KEY 外键约束 FOREIGN KEY 约束----NOT NULL,DEFAULT,CHECK

    如果由两个列共同组成主键,而且一个子表将主键作为可为空值的外键来继承,就可能得到错误的数据.可在一个外键列中插入有效的值,但在另一个外键列中插入空值.然后,可添加一个数据表检查约束,在可为空的外键中检 ...

  10. 一个Java系统测试

    实验感受: 本次实验最大的感受,就是不要改代码,自己写,代码改起来真的没完没了,不知道会出现什么问题.还有就是一定要清楚自己要怎么去写,流程很重要,一个个功能去实现. 主界面 数据库 主页面代码 &l ...