题目链接


题意:多次求区间\(mex\)。

考虑\([1,i]\)的\(mex[i]\),显然是单调的

而对于\([l,r]\)与\([l+1,r]\),如果\(nxt[a[l]]>r\),那么\([l+1,r]\)中所有\(>a[l]\)的数显然要改成\(a[l]\)

把询问按左端点排序;离散化,预处理下\(nxt[]\),处理出\([1,i]\)的\(mex[i]\)。剩下就是线段树的区间更新、单点查询了

/*
离散化的时候>=n的全部看做n就好了
查询时是只需查r点的(l之前能更新r的已经更新完了,初始时是[1,r],r点现在就是[l,r]了)
单点即可不需要PushUp(也不好得某个区间的mex)
非叶节点上的mex完全可以代替tag
离散化需要注意 其实不是很懂这
*/
#include<cstdio>
#include<cctype>
#include<algorithm>
#define gc() getchar()
#define now node[rt]
#define lson node[node[rt].ls]
#define rson node[node[rt].rs]
const int N=2e5+5,INF=1e7; int n,m,A[N],mex[N]/*不要和A混用*/,tmp[N],nxt[N],las[N],ans[N];
bool vis[N];
struct Ques
{
int l,r,id;
Ques() {}
Ques(int l,int r,int id): l(l),r(r),id(id) {}
bool operator <(const Ques &x)const {return l<x.l;}
}q[N];
struct Seg_Tree
{
int tot;
struct Node
{
int ls,rs,mex;
}node[N<<1];
inline void Upd(int &x,int v) {x=std::min(x,v);}
inline void PushDown(int rt)
{
Upd(lson.mex,now.mex), Upd(rson.mex,now.mex);
now.mex=INF;
}
void Build(int l,int r)
{
int rt=tot++;
if(l==r) now.mex = mex[l];
else
{
int m=l+r>>1; now.mex=INF;
now.ls=tot, Build(l,m);
now.rs=tot, Build(m+1,r);
}
}
void Update(int l,int r,int rt,int L,int R,int v)
{
if(L<=l && r<=R) Upd(now.mex,v);
else
{
if(now.mex<INF) PushDown(rt);
int m=l+r>>1;
if(L<=m) Update(l,m,now.ls,L,R,v);
if(m<R) Update(m+1,r,now.rs,L,R,v);
}
}
int Query(int l,int r,int rt,int p)
{
if(l==r) return now.mex;
if(now.mex<INF) PushDown(rt);
int m=l+r>>1;
if(p<=m) return Query(l,m,now.ls,p);
else return Query(m+1,r,now.rs,p);
}
}t;
#undef now
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int Find(int x,int r)
{
int l=1,m;
while(l<r)
{
if(tmp[(m=l+r>>1)]<x) l=m+1;
else r=m;
}
return l;
} int main()
{
n=read(),m=read();
for(int i=1; i<=n; ++i) tmp[i]=A[i]=std::min(n,read());
std::sort(tmp+1,tmp+1+n);
int cnt=1;
for(int i=2; i<=n && !(tmp[i]==n&&tmp[i+1]==n); ++i)
if(tmp[i]!=tmp[i-1]) tmp[++cnt]=tmp[i];
for(int k=0,p,i=1; i<=n; ++i)
{
vis[p=Find(A[i],cnt)]=1;
if(A[i]==k)//只有在当前最小值出现时才更新。。mex...
while(vis[p])//p-1,vis[k]?
{
++k;
if(tmp[++p]!=k) break;//离散化后
}
mex[i]=k;
}
t.Build(1,n);
for(int i=0; i<=n; ++i) las[i]=n+1;
for(int tp,i=n; i; --i) nxt[i]=las[tp=Find(A[i],cnt)], las[tp]=i;//!
for(int l,i=1; i<=m; ++i) l=read(), q[i]=Ques(l,read(),i);
std::sort(q+1,q+1+m);
for(int now=1,i=1; i<=m; ++i)
{
while(now<q[i].l)
t.Update(1,n,0,now+1,nxt[now]-1,A[now]), ++now;
ans[q[i].id]=t.Query(1,n,0,q[i].r);
}
for(int i=1; i<=m; ++i) printf("%d\n",ans[i]); return 0;
}

BZOJ.3585.mex(线段树)的更多相关文章

  1. bzoj 3585 mex - 线段树 - 分块 - 莫队算法

    Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...

  2. BZOJ 3585: mex [主席树]

    3585: mex Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 422[Submit][Status][Discuss] ...

  3. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  4. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  5. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  6. BZOJ 3585: mex( 离线 + 线段树 )

    离线, 询问排序. 先处理出1~i的答案, 这样可以回答左端点为1的询问.完成后就用seq(1)将1到它下一次出现的位置前更新. 不断这样转移就OK了 ------------------------ ...

  7. bzoj 3585: mex && 3339: Rmq Problem -- 主席树

    3585: mex Time Limit: 20 Sec  Memory Limit: 128 MB Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区 ...

  8. HDU-4747 Mex 线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...

  9. 【BZOJ 3476】 线段树===

    59  懒惰的奶牛贝西所在的牧场,散落着 N 堆牧草,其中第 i 堆牧草在 ( Xi,Yi ) 的位置,数量有 Ai 个单位.贝西从家移动到某一堆牧草的时候,只能沿坐标轴朝正北.正东.正西.正南这四个 ...

随机推荐

  1. 【ARTS】01_09_左耳听风-20190107~20190113

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  2. ORACLE 利用SCN恢复误delete的表

    --kg是误删除的表 SQL> select count(*) from kg;   COUNT(*) ----------     820861 SQL> delete from kg; ...

  3. svn数据库自动备份脚本

    创建一个存放备份数据的路径 mkdir /data/svnbak -p 采用shell脚本的方式实现自动备份 #vim backup.sh #!/bin/bash log="/data/sv ...

  4. 使用第三方工具Xtrabackup进行MySQL备份

    使用Xtrabackup进行MySQL备份: 一.安装 1.简介 Xtrabackup是由percona提供的mysql数据库备份工具,据官方介绍,这也是世界上惟一一款开源的能够对innodb和xtr ...

  5. PYTHON-基本数据类型-元祖类型,字典类型,集合类型-练习

    # 1 有如下值集合 [11,22,33,44,55,66,77,88,99,90...],# 将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中## 即: ...

  6. html中子界面与父界面相互操作或传值

    一.在使用iframe的页面,要操作这个iframe里面的DOM元素可以用: contentWindow.contentDocument(测试的时候chrom浏览器,要在服务器环境下) content ...

  7. 使用JSONP实现跨域通信

    引语 Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.由于受到浏览器的限制,该方法不允许 ...

  8. LeetCode(52):N皇后 II

    Hard! 题目描述: n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方 ...

  9. poj1015 01二维背包

    /* 给定辩控双方给每个人的打分p[i],d[i], dp[j][k]表示前i个人有j个被选定,选定的人的辩控双方打分差之和是k,此状态下的最大辩控双方和 按01背包做,体积一维是1,体积二维是辩控双 ...

  10. ERP简介(一)

    ERP是针对物资资源管理(物流).人力资源管理(人流).财务资源管理(财流).信息资源管理(信息流)集成一体化的企业管理软件 一:系统模块简介: