In mathematics, any of the positive integers that occurs as a coefficient in the binomial theorem is a binomial coefficient. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written {\displaystyle {\tbinom {n}{k}}.} {\displaystyle {\tbinom {n}{k}}.} It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n, and it is given by the formula.

英文描述

英文描述请参考下面的图。

中文描述

根据给定的公式计算二项式的值。

在这里有一个说明需要注意的是,如果结果超过 1,000,000,000 你的程序应该返回 -1。

如果结果没有定义的话,那么你的程序应该也要返回 -1。

思路和点评

在这里的计算,公式比较简单,就是计算 N,K N-K 的阶乘,在阶乘中,你可以使用递归进行计算。

但是需要注意的是对这个数字的阶乘计算量,程序是很容易溢出的,如果从出题者的意图来看就是要考察大数值的计算和计算中的溢出。

如果你使用的是 Java 的话,你应该使用类 BigDecimal,进行计算。如果你可以使用 Apache Common Math 的话,你就直接使用 CombinatoricsUtils.factorialDouble 进行计算。在计算中允许的最大参数值为 170,超过这个值以后就超过程序能够计算的最大值了。

如果你希望直接计算二项式系数的话,你可以使用 CombinatoricsUtils.binomialCoefficientDouble(40, 20) 直接进行计算。

源代码

源代码和有关代码的更新请访问 GitHub:

https://github.com/cwiki-us/codebank-algorithm/blob/master/src/test/java/com/ossez/codebank/interview/tests/WayfairTest.java

测试类请参考:

https://github.com/cwiki-us/codebank-algorithm/blob/master/src/test/java/com/ossez/codebank/interview/tests/WayfairTest.java

代码思路请参考:

/**
* https://www.cwiki.us/display/ITCLASSIFICATION/Binomial+Coefficient
*
* Binomial Coefficient
*/
@Test
public void testBinomialCoefficient() {
int n = 40;
int k = 20; BigDecimal bc = factorial(n).divide(factorial(k).multiply(factorial(n - k)));
// a.compareTo(new BigDecimal(1000000000))
logger.debug("{}", bc);
logger.debug("Check for Compare To - [{}]", bc.compareTo(new BigDecimal(1000000000)));
logger.debug("Value - [{}]", bc); logger.debug("Apache CombinatoricsUtils Factorial - [{}]", CombinatoricsUtils.factorialDouble(20));
logger.debug("Apache CombinatoricsUtils Binomial Coefficient - [{}]", CombinatoricsUtils.binomialCoefficientDouble(40, 20)); } /**
* for factorial
*
* @param x
* @return
*/
private static BigDecimal factorial(int x) {
if (x == 1 || x == 0) {
return BigDecimal.valueOf(1);
} else {
return BigDecimal.valueOf(x).multiply(factorial(x - 1));
}
}

测试结果

上面程序的测试结果如下:

2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - 137846528820
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Check for Compare To - [1]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Value - [137846528820]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Apache CombinatoricsUtils Factorial - [2.43290200817664E18]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Apache CombinatoricsUtils Binomial Coefficient - [1.3784652882E11]

Binomial Coefficient(二项式系数)的更多相关文章

  1. 关于 Binomial Coefficient is Fun

    题目传送门 Solution 应该这个做法不是很常见吧. 我们设 \(f_{i,j}\) 表示前面 \(i\) 个数,选出的数和为 \(j\) 的贡献之和.因为我们有以下式子: \[\sum_{i=a ...

  2. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  3. Codeforces/TopCoder/ProjectEuler/CodeChef 散题笔记 (持续更新)

    最近做到了一些有趣的散题,于是开个Blog记录一下吧… (如果有人想做这些题的话还是不要看题解吧…) 2017-03-16 PE 202 Laserbeam 题意:有一个正三角形的镜子屋,光线从$C$ ...

  4. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. Lucas定理

    Lucas' theorem In number theory, Lucas's theorem expresses the remainder of division of the binomial ...

  6. Conjugate prior relationships

    Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...

  7. java积累

    数组的使用 package javaDemo; import java.util.*; /** * * @author Administrator * @version 1.0 * * */ publ ...

  8. OI不得不知的那些数学定理

    Binomial theorem One can define\[{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!}\ ...

  9. UVA10375 Choose and divide 质因数分解

    质因数分解: Choose and divide Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %l ...

随机推荐

  1. 《HTML与CSS 第一章 认识HTML》读书笔记

    一.Web让广播明星黯然失色 要建立Web页面,需要创建用超文本标记语言(HyperText Markup Language,HTML)编写的文件,把它们放在一个Web服务器上 二.Web服务器能做什 ...

  2. Python3 tkinter基础 Listbox Scrollbar 创建垂直滚动条

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  3. Flask学习【第9篇】:Flask-script组件

    Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行任 ...

  4. linux内核中宏likely和unlikely到底做了些什么?

    1. 先看看它们长啥样吧!(它们有两种定义,第一种是使能了程序trace功能的宏定义,第二种是普通的宏定义,咱们分析普通宏定义吧) # define likely(x) __builtin_expec ...

  5. [HEOI2016/TJOI2016]树

    [HEOI2016/TJOI2016]树 思路 做的时候也是糊里糊涂的 就是求最大值的线段树 错误 线段树写错了 #include <bits/stdc++.h> #define FOR( ...

  6. NRF24L01模块配置

    发射数据时:   (1)首先将nRF24L01配置为发射模式   (2)接着把接收节点地址TX_ADDR和有效数据TX_PLD按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低 ...

  7. 【译】第15节---数据注解-StringLength

    原文:http://www.entityframeworktutorial.net/code-first/stringlength-dataannotations-attribute-in-code- ...

  8. 基于 Python 和 Pandas 的数据分析(3) --- 输入/输出 基础

    这一节, 我们要讨论 Pandas 的输入与输出, 并且应用在现实的实际例子中. 为了得到大量的数据, 向大家推荐一个网站 Quandl. Quandl 有很多免费和付费的资源. 这个网站最大的优势在 ...

  9. Django本地开发,引用静态文件,火狐浏览器不能访问静态文件,谷歌浏览器却能访问静态文件

    查了一下是settings.py设置问题 # Static files (CSS, JavaScript, Images)# https://docs.djangoproject.com/en/1.1 ...

  10. 自动化测试基础-断言(Assert)使用方法

    junit中的assert方法全部放在Assert类中,总结一下junit类中assert方法的分类.1.assertTrue/False([String message,]boolean condi ...