In mathematics, any of the positive integers that occurs as a coefficient in the binomial theorem is a binomial coefficient. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written {\displaystyle {\tbinom {n}{k}}.} {\displaystyle {\tbinom {n}{k}}.} It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n, and it is given by the formula.

英文描述

英文描述请参考下面的图。

中文描述

根据给定的公式计算二项式的值。

在这里有一个说明需要注意的是,如果结果超过 1,000,000,000 你的程序应该返回 -1。

如果结果没有定义的话,那么你的程序应该也要返回 -1。

思路和点评

在这里的计算,公式比较简单,就是计算 N,K N-K 的阶乘,在阶乘中,你可以使用递归进行计算。

但是需要注意的是对这个数字的阶乘计算量,程序是很容易溢出的,如果从出题者的意图来看就是要考察大数值的计算和计算中的溢出。

如果你使用的是 Java 的话,你应该使用类 BigDecimal,进行计算。如果你可以使用 Apache Common Math 的话,你就直接使用 CombinatoricsUtils.factorialDouble 进行计算。在计算中允许的最大参数值为 170,超过这个值以后就超过程序能够计算的最大值了。

如果你希望直接计算二项式系数的话,你可以使用 CombinatoricsUtils.binomialCoefficientDouble(40, 20) 直接进行计算。

源代码

源代码和有关代码的更新请访问 GitHub:

https://github.com/cwiki-us/codebank-algorithm/blob/master/src/test/java/com/ossez/codebank/interview/tests/WayfairTest.java

测试类请参考:

https://github.com/cwiki-us/codebank-algorithm/blob/master/src/test/java/com/ossez/codebank/interview/tests/WayfairTest.java

代码思路请参考:

/**
* https://www.cwiki.us/display/ITCLASSIFICATION/Binomial+Coefficient
*
* Binomial Coefficient
*/
@Test
public void testBinomialCoefficient() {
int n = 40;
int k = 20; BigDecimal bc = factorial(n).divide(factorial(k).multiply(factorial(n - k)));
// a.compareTo(new BigDecimal(1000000000))
logger.debug("{}", bc);
logger.debug("Check for Compare To - [{}]", bc.compareTo(new BigDecimal(1000000000)));
logger.debug("Value - [{}]", bc); logger.debug("Apache CombinatoricsUtils Factorial - [{}]", CombinatoricsUtils.factorialDouble(20));
logger.debug("Apache CombinatoricsUtils Binomial Coefficient - [{}]", CombinatoricsUtils.binomialCoefficientDouble(40, 20)); } /**
* for factorial
*
* @param x
* @return
*/
private static BigDecimal factorial(int x) {
if (x == 1 || x == 0) {
return BigDecimal.valueOf(1);
} else {
return BigDecimal.valueOf(x).multiply(factorial(x - 1));
}
}

测试结果

上面程序的测试结果如下:

2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - 137846528820
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Check for Compare To - [1]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Value - [137846528820]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Apache CombinatoricsUtils Factorial - [2.43290200817664E18]
2018/12/29 19:35:10 DEBUG [com.ossez.codebank.interview.tests.WayfairTest] - Apache CombinatoricsUtils Binomial Coefficient - [1.3784652882E11]

Binomial Coefficient(二项式系数)的更多相关文章

  1. 关于 Binomial Coefficient is Fun

    题目传送门 Solution 应该这个做法不是很常见吧. 我们设 \(f_{i,j}\) 表示前面 \(i\) 个数,选出的数和为 \(j\) 的贡献之和.因为我们有以下式子: \[\sum_{i=a ...

  2. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  3. Codeforces/TopCoder/ProjectEuler/CodeChef 散题笔记 (持续更新)

    最近做到了一些有趣的散题,于是开个Blog记录一下吧… (如果有人想做这些题的话还是不要看题解吧…) 2017-03-16 PE 202 Laserbeam 题意:有一个正三角形的镜子屋,光线从$C$ ...

  4. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. Lucas定理

    Lucas' theorem In number theory, Lucas's theorem expresses the remainder of division of the binomial ...

  6. Conjugate prior relationships

    Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...

  7. java积累

    数组的使用 package javaDemo; import java.util.*; /** * * @author Administrator * @version 1.0 * * */ publ ...

  8. OI不得不知的那些数学定理

    Binomial theorem One can define\[{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!}\ ...

  9. UVA10375 Choose and divide 质因数分解

    质因数分解: Choose and divide Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %l ...

随机推荐

  1. Linux使用——Linux命令——CentOS7防火墙使用

    注意:设置防火墙需要使用具有root权限的用户进入: CentOS 7.0默认使用的是firewall作为防火墙: CentOS 7.0使用systemctl来管理服务和程序,包括了service和c ...

  2. dp入门(LIS,LCS)

    LCS

  3. CodeForces 867B Save the problem

    B. Save the problem! http://codeforces.com/contest/867/problem/B time limit per test 2 seconds memor ...

  4. 黄金连分数|2013年蓝桥杯B组题解析第四题-fishers

    黄金连分数 黄金分割数0.61803... 是个无理数,这个常数十分重要,在许多工程问题中会出现.有时需要把这个数字求得很精确. 对于某些精密工程,常数的精度很重要.也许你听说过哈勃太空望远镜,它首次 ...

  5. 为静态博客生成器WDTP移植了一款美美哒主题

    前言 关于这个主题的移植后公布,我已经联系了主题作者并取得同意,这个主题是一夜涕所写的Sgreen,预览图见下 关于WDTP 就是一个很方便很便携很快速的cpp编写的带gui跨平台的开源的静态博客生成 ...

  6. c# 之partial(分部代码和分部类)

    using System; namespace Partial { class Program { static void Main(string[] args) { A a = new A(); } ...

  7. WebLogic调用WebService提示Failed to localize、Failed to create WsdlDefinitionFeature

    在本地Tomcat环境下调用WebService正常,但是部署到WebLogic环境中,则提示警告:[Failed to localize] MEX0008.PARSING_MDATA_FAILURE ...

  8. P3159 [CQOI2012]交换棋子

    思路 相当神奇的费用流拆点模型 最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法 S向所有初始是黑 ...

  9. p4168 [Violet]蒲公英(分块)

    区间众数的重题 和数列分块入门9双倍经验还是挺好的 然后开O2水过 好像有不带log的写法啊 之后在补就是咕咕咕 // luogu-judger-enable-o2 #include <cstd ...

  10. hihoCoder 1339 Dice Possibility(DP)

    http://hihocoder.com/problemset/problem/1339 题意: 求一个骰子扔n次后最后点数相加为m的概率. 思路: f[i][j]表示扔到第i次时总值为j的概率. # ...