先看一个非常简单的例子:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a)

有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。

解决方法

可以用的方法简单列举如下:

对于创建DataFrame的情形

如果要创建一个DataFrame,可以直接通过dtype参数指定类型:

df = pd.DataFrame(a, dtype='float')  #示例1
df = pd.DataFrame(data=d, dtype=np.int8) #示例2
df = pd.read_csv("somefile.csv", dtype = {'column_name' : str})

对于单列或者Series

下面是一个字符串Seriess的例子,它的dtype为object

>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10'])
>>> s
0 1
1 2
2 4.7
3 pandas
4 10
dtype: object

使用to_numeric转为数值。默认情况下,它不能处理字母型的字符串'pandas':

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise')
ValueError: Unable to parse string

可以将无效值强制转换为NaN,如下所示:

>>> pd.to_numeric(s, errors='coerce')
0 1.0
1 2.0
2 4.7
3 NaN
4 10.0
dtype: float64

如果遇到无效值,第三个选项就是忽略该操作:

>>> pd.to_numeric(s, errors='ignore')
# the original Series is returned untouched

对于多列或者整个DataFrame

如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。

对于某个DataFrame:

>>> a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
>>> df = pd.DataFrame(a, columns=['col1','col2','col3'])
>>> df
col1 col2 col3
0 a 1.2 4.2
1 b 70 0.03
2 x 5 0

然后可以写:

df[['col2','col3']] = df[['col2','col3']].apply(pd.to_numeric)

那么'col2'和'col3'根据需要具有float64类型。

但是,可能不知道哪些列可以可靠地转换为数字类型。在这种情况下,设置参数:

df.apply(pd.to_numeric, errors='ignore')

然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期)的列将被单独保留。

另外pd.to_datetimepd.to_timedelta可将数据转换为日期和时间戳。

软转换——类型自动推断

版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。

例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串:

>>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
>>> df.dtypes
a object
b object
dtype: object

然后使用infer_objects(),可以将列'a'的类型更改为int64:

>>> df = df.infer_objects()
>>> df.dtypes
a int64
b object
dtype: object

由于'b'的值是字符串,而不是整数,因此'b'一直保留。

astype强制转换

如果试图强制将两列转换为整数类型,可以使用df.astype(int)

示例如下:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df
Out[16]:
one two three
0 a 1.2 4.2
1 b 70 0.03
2 x 5 0 df.dtypes
Out[17]:
one object
two object
three object df[['two', 'three']] = df[['two', 'three']].astype(float) df.dtypes
Out[19]:
one object
two float64
three float64

在Pandas中更改列的数据类型【方法总结】的更多相关文章

  1. 在 Pandas 中更改列的数据类型

    import pandas as pd import numpy as np a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0' ...

  2. Oracle中对列加密的方法

    Oracle中对列加密的方法 2011-12-22 17:21:13 分类: Linux Oracle支持多种列加密方式: 1,透明数据加密(TDE):create table encrypt_col ...

  3. (数据科学学习手札131)pandas中的常用字符串处理方法总结

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在日常开展数据分析的过程中,我们经常需要对 ...

  4. 备忘:MySQL中修改表中某列的数据类型、删除外键约束

    -- MySQL中修改表中某列的数据类型 ALTER TABLE [COLUMN] 表名 MODIFY 列名 列定义; -- 删除外键约束 SHOW CREATE TABLE 表名; -- 复制CON ...

  5. python – 基于pandas中的列中的值从DataFrame中选择行

    如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...

  6. Pandas中查看列中数据的种类及个数

    Pandas中查看列中数据的种类及个数 读取数据 import pandas as pd import numpy as np filepath = 'your_file_path.csv' data ...

  7. 【转载】C#如何获取DataTable中某列的数据类型

    在C#的数据表格DataTable的操作中,有时候因为业务需要,我们需要获取到DataTable所有列或者某一列的数据类型,此时我们可以通过DataTable中的Columns属性对象的DataTyp ...

  8. Python在for循环中更改list值的方法

    一.在for循环中直接更改列表中元素的值不会起作用: 如: l = list(range(10)[::2]) print (l) for n in l: n = 0 print (l) 运行结果: [ ...

  9. Asp.net 修改已有数据的DataTable中某列的数据类型

    DataTable dt_PI = new DataTable(); //克隆表结构 dt_PI = ds.Tables[].Clone(); dt_PI.Columns["FLTFullP ...

随机推荐

  1. IdentityServer4-前后端分离之Vue(七)

    前言 之前文章讲到如何使用Node.js+Express构建JavaScript客户端,实现前后端分离.本节将介绍如何使用Vue实现前后端分离,文中介绍Vue的知识比较基础,适合新手学习. 一.搭建V ...

  2. GCC&&GDB在OI中的介绍

    序言 这本来是用Word写的,但是后来我换了系统所以只能用markdown迁移然后写了...... $\qquad$本文主要投食给那些在Windows下活了很久然后考试时发现需要用命令行来操作时困惑万 ...

  3. China Operating System 电脑操作系统 2016全球互联网排名

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 电脑操作系统 China Operating System 2016全球互联网排名 == ...

  4. Python3基础之异常结构

    自定义异常类 class ShortInputException(Exception): def __init__(self, length, atleast): Exception.__init__ ...

  5. 潭州课堂25班:Ph201805201 爬虫高级 第三课 sclapy 框架 腾讯 招聘案例 (课堂笔记)

    到指定目录下,创建个项目 进到 spiders 目录 创建执行文件,并命名 运行调试 执行代码,: # -*- coding: utf-8 -*- import scrapy from ..items ...

  6. Tidis单机部署

    拉取镜像 docker pull yongman/tidis:latest docker pull pingcap/tikv docker pull pingcap/pd 运行pd,由于Raft算法3 ...

  7. [原创]Network Emulator for Windows Toolkit使用介绍

    [原创]Network Emulator for Windows Toolkit使用介绍 1 Network Emulator for Windows Toolkit简介 微软在window系统下,可 ...

  8. android:应用性能优化SparseArray

    HashMap是java里比较常用的一个集合类,我比较习惯用来缓存一些处理后的结果.最近在做一个Android项目,在代码中定义这样一个变量,实例化时,Eclipse却给出了一个 performanc ...

  9. js显示屏幕分辨率

    <div style=" width:88%;margin:30px auto; color:blue;" id="div_html"> </ ...

  10. MySql之查询基础与进阶

     转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/8283547.html 一:基本查询 SELECT [DISTINCT] 列1,列2,列3... FROM 表 ...