Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as 
1/Σ(to,td)d(to,td)
where the sum goes over all pairs of types in the derivation plan such that t o is the original type and t d the type derived from it and d(t o,t d) is the distance of the types. 
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan. 

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

意思是给出n个长度相同的字符串,一个字符串代表一个点,每两个字符串有多少个字符不同,则不同的个数即为两点之间的距离,要求各个点都连通求quality的最大值
 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX=;
int fa[MAX];
char s[MAX][];
int n,m;
struct Edge
{
int u,v,w;
}e[MAX*MAX/];
int cmp(Edge a,Edge b)
{
return a.w<b.w;
}
void UF_set()
{
for(int i=;i<MAX;i++)
fa[i]=i;
}
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
void Union(int a, int b)
{
int r1=Find(a);
int r2=Find(b);
if(r1!=r2)
fa[r2] = r1;
}
void get_map()
{
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
int cnt = ;
for(int k=;k<;k++)
cnt+=(s[i][k]!=s[j][k]);
e[m].u = i;
e[m].v = j;
e[m++].w = cnt;
}
}
}
int Kruskal()
{
int num=,sum=;
UF_set();
for(int i = ; i < m; i++){
int u = e[i].u;
int v = e[i].v;
if(Find(u) != Find(v)){
Union(u, v);
sum += e[i].w;
num++;
}
if(num>=n-) break;
}
return sum;
}
int main()
{
while(scanf("%d",&n)!=EOF&&n){
for(int i=;i<n;i++)
scanf("%s",s[i]);
m=;
get_map();
sort(e,e+m,cmp);
printf("The highest possible quality is 1/%d.\n",Kruskal());
}
}

POJ 1789 Truck History (Kruskal 最小生成树)的更多相关文章

  1. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  2. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  3. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  4. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  5. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  6. poj 1789 Truck History(最小生成树)

    模板题 题目:http://poj.org/problem?id=1789 题意:有n个型号,每个型号有7个字母代表其型号,每个型号之间的差异是他们字符串中对应字母不同的个数d[ta,tb]代表a,b ...

  7. POJ 1789 Truck History【最小生成树模板题Kruscal】

    题目链接:http://poj.org/problem?id=1789 大意: 不同字符串相同位置上不同字符的数目和是它们之间的差距.求衍生出全部字符串的最小差距. #include<stdio ...

  8. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  9. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

随机推荐

  1. .Net 学习过程

    1.C#面向过程编程. 2.C#面向对象基础. 3.WPF教程. 4.SQL语句. 5.ADO.Net. 6.HTML.JavaScript.Dom. 7.ASP.Net.

  2. LigerUi折叠与展开

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  3. C++读取dll文件所在目录

    ////保证config.txt从本DLL目录位置读取 //获取DLL自身所在路径(此处包括DLL文件名) }; GetModuleFileNameA((HINSTANCE)&__ImageB ...

  4. 列表 list 容器类型数据(str字符串, list列表, tuple元组, set集合, dict字典)--->元组 tuple-->字符串 str

    # ### 列表 list 容器类型数据(str字符串, list列表, tuple元组, set集合, dict字典) # (1)定义一个列表 listvar = [] print(listvar, ...

  5. (转)以太坊(Ethereum ETH)的奖励机制

    如果问一块显卡它最恨什么,那么答案一定是以太坊.以太坊,矿工为之疯狂,显卡为之颤抖,游戏玩家为之骂娘. 然而,除了购买矿机.连接矿池.卖币套现之外,是否有人关注过以太坊的奖励机制呢? 且听我慢慢道来. ...

  6. Python 数据结构 链表

    什么是时间复杂度 时间频度:一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才知道.但是我们不可能也没有必要对每一个算法都进行上机测试,只需要知道那个算法花费的时间多,那个算法花费得 ...

  7. python 调用阿里云服务器api创建服务器

    首先安装阿里云SDK pip install aliyun-python-sdk-core pip install aliyun-python-sdk-ecs 可以配合jenkins传递参数 #!/u ...

  8. OpenShift nfs 持久化

    创建PV { "apiVersion": "v1", "kind": "PersistentVolume", " ...

  9. 26-Python3 面向对象

    26-Python3 面向对象 ''' 面向对象技术简介 ''' ''' 类定义 ''' ''' 类对象 ''' class MyClass: i = 12345 def f(self): retur ...

  10. leetcode 300最长上升子序列

    用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...