poj1062(分区间迪杰斯特拉,内含测试数据,一直wa的同学可以进来看看)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 54946 | Accepted: 16518 |
Description
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。
Input
Output
Sample Input
1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0
Sample Output
5250
Source
。#include<cstdio>
#include<cstring>
#include<vector>
#define ll long long
using namespace std;
ll n,m;
struct st{
ll w;
ll i;
};
struct{
vector<st> v;
ll l;
}s[110];
ll min(ll a,ll b){
if(a>b)
return b;
return a;
}
ll check(ll a,ll b){
if(a>=b)
return a>(b+m);
return 1;
}
ll dis[110],vt[110];
ll dp[110];
ll mn1;
ll djstl(ll k){
ll i,j,p;
ll mn;
for(i=1;i<=n;i++)
dp[i]=1e9;
dp[1]=0;//dis[1];
for(i=1;i<=n;i++){
vt[k]=1;
mn=1e9;
for(j=0;j<s[k].v.size();j++){
if(!vt[s[k].v[j].i])
dp[s[k].v[j].i]=min(dp[s[k].v[j].i],dp[k]+s[k].v[j].w);//min(dp[s[k].v[j].i],dp[k]-dis[k]+s[k].v[j].w+dis[s[k].v[j].i]);
}//如果用注释后的代码做的话普通的测试数据都可以得出正确答案,但是一旦用这组数据就错了
/*4 4
50000 4 2
2 10
3 10
1000 4 1
4 3
100 4 1
4 10
10 4 0 23*/
//因为我们要找的是一条最短路,每次应该通过边的值(而不能直接加上当前点的值)来更新当前的dp数组(到每个点的最短距离)
//(不能加上当前点的基础价格来更新(因为我们可以通过交易其他的物品来减少当前物品的花费,
//所以如果你直接加上当前点的基础价格就不能保证每次找的都是当前最短的的那条路的终点)
for(p=1;p<=n;p++){
if(!vt[p]&&(mn>dp[p])){
mn=dp[p];
k=p;
}
}
if(mn==1e9)
break;
}
for(i=1;i<=n;i++)
if(mn1>dp[i]+dis[i])//最后才加上终点的基础价格
mn1=dp[i]+dis[i];//dp[i];
return 0;
}
int main(){
ll i,j;
ll x;
ll b,c;
c=0;
st a;
scanf("%lld%lld",&m,&n);
for(i=1;i<=n;i++){
scanf("%lld%lld%lld",&dis[i],&s[i].l,&x);
for(j=0;j<x;j++){
scanf("%lld%lld",&a.i,&a.w);
s[i].v.push_back(a);
}
}
/*
for(i=1;i<=n;i++){
for(j=0;j<s[i].v.size();j++)
if(s[i].l>s[s[i].v[j].i].l+m)
s[i].v.erase(s[i].v.begin()+j);
}*/
mn1=1e9;
for(i=s[1].l-m;i<=s[1].l;i++){
memset(vt,0,sizeof(vt));
for(j=1;j<=n;j++){
if(check(s[j].l,i))//将区间外的点直接标记为1
vt[j]=1;
//else //prllf("%d ",j);
}
//prllf("\n");
djstl(1);
}
printf("%lld\n",mn1);
return 0;
}
poj1062(分区间迪杰斯特拉,内含测试数据,一直wa的同学可以进来看看)的更多相关文章
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- 【算法杂谈】LJX的迪杰斯特拉算法报告
迪杰斯特拉(di jie qi)算法 这里有一张图: 假设要求从1号节点到5号节点的最短路.那么根据迪杰斯特拉算法的思想,我们先看: 节点1,从节点1出发的一共有3条路,分别是1-6.1-3.1-2. ...
- HDU6166-Senior Pan-Dijkstra迪杰斯特拉算法(添加超源点,超汇点)+二进制划分集合-2017多校Team09
学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others) Memor ...
- pat1003 迪杰斯特拉法和dfs求最短路
本题的背景是求定点和定点之间的最短路问题(所有的最短路 不是一个解 是全部解,方法手段来自数据结构课程中的迪杰斯特拉算法和dfs(深度优先遍历). 分别用两种方法编程如下代码 dfs #includ ...
- PAT 1087 All Roads Lead to Rome[图论][迪杰斯特拉+dfs]
1087 All Roads Lead to Rome (30)(30 分) Indeed there are many different tourist routes from our city ...
- 说说关于洛谷P4779迪杰斯特拉的堆优化
众所周知,这题必须要用堆优化的迪杰斯特拉的堆优化才能过,否则60分(错失一等奖) 我没有得过一等奖但还是要说: P4779 全过程: struct node//堆中的比较函数 { int dis; i ...
- Poj 3268 Silver cow party 迪杰斯特拉+反向矩阵
Silver cow party 迪杰斯特拉+反向 题意 有n个农场,编号1到n,每个农场都有一头牛.他们想要举行一个party,其他牛到要一个定好的农场中去.每个农场之间有路相连,但是这个路是单向的 ...
- bfs输出路径 && 最短路(迪杰斯特拉)输出路径
问题描述 解决方法 1.像第一个问题那就是最短路问题(我代码采用迪杰斯特拉算法)实现 2.换乘次数最少,那就用bfs广搜来寻找答案.但是我的代码不能保证这个最少换乘是最短路程 代码 1 #includ ...
随机推荐
- p1460 Healthy Holsteins
列举所有的子集找最优就行. #include <iostream> #include <cstdio> #include <cmath> #include < ...
- sgu 154
Factorial 题意:能否找到一个数,它的阶乘后面0的个数为n? 数越大,阶乘后的0越多.用二分找.对于一个数x,它的阶乘,将小于等于它的数分解质因数.其中2的个数一定大于5的个数.因此计5的个数 ...
- js将字符串转json
Json格式字符串 "{"rows":[{"date":"2018-11-19","money":" ...
- 整体二分求动态区间第k大
比树状数组套主席树不知道高到哪里去了,solve(l,r,L,R)就是对于L,R的操作区间的答案都在l,r区间里,然后递归下去 复杂度O(nlognlogn),每个操作会执行logn次就是o(nlog ...
- spring boot(十二)打包部署
有很多网友会时不时的问我,spring boot项目如何测试,如何部署,在生产中有什么好的部署方案吗?这篇文章就来介绍一下spring boot 如何开发.调试.打包到最后的投产上线. 开发阶段 单元 ...
- python-day79--知识回顾
内容回顾: 1. 可迭代对象.迭代器.生成器是什么?什么区别? 可迭代对象,含有__iter__,返回一个迭代器 迭代器,含有__iter__,__next__方法 生成器,yield,__next_ ...
- sqlserver 优化
避免在索引列上使用计算 where子句中,如果索引列是函数的一部分,优化器将不使用索引而使用全表扫描.例如: (低效)select ... from [dept] where [sal]*12> ...
- Ubuntu中安装deb包程序
deb是Debian Linux的安装格式,跟Red Hat Linux的rpm非常相似,最基本的安装命令是:dpkg -i file.deb dpkg 是Debian Package的简写,是为De ...
- Talend 数据转换
2个系统都有客户信息,产品信息. 要从一个系统a导出数据给另一个系统b用. 有2个方法. 1.在a系统的客户表,产品表加一个字段,记录b系统对应的ID,导出时直接用sql转换了. 2. 用ETL工具转 ...
- 包--json 与 pickle 模块
一. 包 一个含有__init__.py 文件的文件夹(将py 文件中的内容划分成不同的部分放在不同的py 文件中,在将这些py 文件放在一个文件夹中) 是模块,不做执行文件,仅做调用 m1.py 和 ...