【做题】NOWCODER142A Ternary String——数列&欧拉定理
题意:你有一个长度为\(n\),且仅由012构成的字符串。每经过一秒,这个字符串所有1后面会插入一个0,所有2后面会插入一个1,然后会删除第一个元素。求这个字符串需要多少秒变为空串,对\(10^9+7\)取模。
\(n \leq 10^5\)
显然这个答案是可以从左往右维护当前已经经过的时间,一位位算过来的。
设当前已经经过了\(n\)秒,那么,容易得到再删除下一个0需要1秒,再删除下一个1需要\(n+2\)秒。然而若下一个元素为2,似乎并不好处理。但至少我们能得到一个\(O(n)\)的算法:
int func1(int n) { // 删除1所需时间
return n + 2;
}
int func2(int n) {
int ret = 0;
for (int k = 0 ; k <= n ; ++ k) // 统计删除这个2所产生的1的时间
ret = ret + func1(ret) + k;
ret = ret + 1; // 删除这个2还要1秒
return ret;
}
于是,我们设数列\({a_n}\)表示\(n\)后删除一个2的时间是\(a_n+1\),那么,我们能得到\(a_n = 2a_{n-1} + n + 2\)。那么,我们就能求出其通项式\(a_n = 6 \times 2^n - n - 4\)。
因此,删除下一个2需要\(6 \times 2^n - n - 3\)秒。
到这里问题还没有解决,因为\(n\)在指数里面。这样,如果我们要求答案对\(10^9+7\)取模的值,就要求答案对\(\phi(10^9+7)\)取模的值。而当模数\(p\)与\(2\)不互质时,可以参考bzoj3884的做法,令\(p=2^k q\),其中\(gcd(2,q)=1\),那么我们有\(2^n \mod p = 2^k (2 ^{n-k} \mod q) = 2^k (2^{n-k \mod \phi(q)})\)。于是我们就可以缩小模数,一直到1。因为所有不等于\(1\)的\(q\)都有\(2 | \phi (q)\),所以除第一个外所有\(p\)都是偶数,则\(\phi(q) \leq q \leq \frac {p} {2}\)。因此我们只要对\(O(\log n)\)个答案求解。
实现时还要考虑\(n < k\)的情况,特判一下就可以了。
时间复杂度\(O(n \log^2 n)\)。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 100010, MAX = 40000, MOD = (int)(1e9 + 7);
char s[N];
int n,isp[MAX + 10],pri[MAX],pcnt,val[N],nex[N],sta[N],top,rel[N];
int getphi(int x) {
int ret = x;
for (int i = 1 ; pri[i] * pri[i] <= x ; ++ i) {
if (x % pri[i] == 0) {
ret /= pri[i];
ret *= pri[i] - 1;
while (x % pri[i] == 0) x /= pri[i];
}
}
if (x != 1) ret = ret / x * (x-1);
return ret;
}
int power(int a,int b,int mod) {
int ret = 1;
while (b) {
if (b&1) ret = 1ll * ret * a % mod;
a = 1ll * a * a % mod;
b >>= 1;
}
return ret;
}
void prework() {
for (int i = 2 ; i <= MAX ; ++ i) {
if (!isp[i]) pri[++pcnt] = i;
for (int j = 1 ; j <= pcnt && pri[j] * i <= MAX ; ++ j) {
isp[pri[j] * i] = 1;
if (i % pri[j] == 0) break;
}
}
for (int cur = MOD ; ; ) {
sta[++top] = cur;
if (cur == 1) break;
while ((cur&1) == 0) cur >>= 1;
cur = getphi(cur);
}
}
signed main() {
int T;
prework();
scanf("%lld",&T);
while (T --) {
scanf("%s",s+1);
n = strlen(s+1);
for (int i = 0 ; i <= n ; ++ i)
val[i] = 0;
rel[0] = 0;
for (int i = 1 ; i <= n ; ++ i) rel[i] = -1;
for (int i = 1 ; i <= n ; ++ i) {
if (s[i] == '0') rel[i] = rel[i-1] + 1;
if (s[i] == '1') rel[i] = 2 * (rel[i-1] + 1);
if (s[i] == '2') rel[i] = 6 * power(2,rel[i-1],MOD) - 3;
if (rel[i] >= 20) {
rel[i] = -1;
break;
}
}
for (int i = top - 1 ; i >= 1 ; -- i) {
int y = sta[i], x = 1, k = 0;
while ((y&1) == 0) x <<= 1, k ++, y >>= 1;
for (int j = 1 ; j <= n ; ++ j) {
if (s[j] == '0') nex[j] = 1;
else if (s[j] == '1') nex[j] = (nex[j-1] + 2) % sta[i];
else {
if (rel[j-1] != -1) nex[j] = (6 * power(2,rel[j-1],sta[i]) - nex[j-1] - 3) % sta[i];
else nex[j] = ((x * power(2,((val[j-1] - k) % sta[i+1] + sta[i+1]) % sta[i+1],y)) * 6 - nex[j-1] - 3) % sta[i];
}
nex[j] = (nex[j-1] + nex[j]) % sta[i];
}
for (int j = 0 ; j <= n ; ++ j)
val[j] = (nex[j] % sta[i] + sta[i]) % sta[i];
}
printf("%lld\n",val[n]);
}
return 0;
}
小结:本题无非不是两个部分,一是数列求解,二是处理指数。关键还是在于清晰的思路。
【做题】NOWCODER142A Ternary String——数列&欧拉定理的更多相关文章
- 【做题】CF119D. String Transformation——KMP
题意:有两个字符串\(a,b\),下标从\(0\)开始.求数对\((i,j)\)满足\(a[i+1:j] + r(a[j:n]) + r(a[0:i+1]) = b\),其中\(r(s)\)表示字符串 ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
- codeforces ~ 1009 B Minimum Ternary String(超级恶心的思维题
http://codeforces.com/problemset/problem/1009/B B. Minimum Ternary String time limit per test 1 seco ...
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- CodeM美团点评编程大赛复赛 做题感悟&题解
[T1] [简要题意] 长度为N的括号序列,随机确定括号的方向:对于一个已确定的序列,每次消除相邻的左右括号(右左不行),消除后可以进一步合并和消除直到不能消为止.求剩下的括号的期望.\(N \l ...
- (luogu1704)寻找最优美做题曲线 [TPLY]
寻找最优美做题曲线 题目链接:https://www.luogu.org/problemnew/show/P1704 题目大意: 求包含指定点的最长不降子序列(严格递增) 题解 首先我们发现 一个序列 ...
- SDOI2016 R1做题笔记
SDOI2016 R1做题笔记 经过很久很久的时间,shzr终于做完了SDOI2016一轮的题目. 其实没想到竟然是2016年的题目先做完,因为14年的六个题很早就做了四个了,但是后两个有点开不动.. ...
- AtCoder Grand Contest 1~10 做题小记
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...
- noip做题记录+挑战一句话题解?
因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...
随机推荐
- sqlserver Distributed Transaction 分布式事务
在webapi+ef+sqlserver开发项目时,利用transcope实现应用层级的事务时,偶尔会报分布式事务错误,而且很而复现,特别蛋疼.现将自己的解决方法初步整理下. 分析原因:搭建repos ...
- Rpgmakermv(15) PH任务插件
插件介绍 一个用来简单显示任务阶段的任务书 使用方法 插件安装 下载js文件放置到游戏目录/plugins目录下.打开插件管理器,选择PH_QuestBook.js并开启. 插件参数 Show in ...
- MySql 学习参考目录
[1]< MySql 数据类型> [2]< MySql 基础 > [3]< MySql 存储过程 > PS:个人认为,如上总结超值. Good Good Study ...
- 做一次面向对象的体操:将JSON字符串转换为嵌套对象的一种方法
背景与问题 在 <一个略复杂的数据映射聚合例子及代码重构> 一文中,将一个JSON字符串转成了所需要的订单信息Map.尽管做了代码重构和配置化,过程式的代码仍然显得晦涩难懂,并且客户端使用 ...
- 国外互联网大企业(flag)的涨薪方式
国外互联网大企业(flag)指的是:Facebook,Google,Amazon,LinkedIn 至于 A 代表哪家公司存在争议:有人说是Amazon,也有说是Apple,现在更有人说应该是AirB ...
- vue之component
因为组件是可复用的 Vue 实例,所以它们与 new Vue 接收相同的选项,例如 data.computed.watch.methods 以及生命周期钩子等.仅有的例外是像 el 这样根实例特有的选 ...
- Codeforce 296A - Yaroslav and Permutations
Yaroslav has an array that consists of n integers. In one second Yaroslav can swap two neighboring a ...
- PLSQL 问题小记
问题1:在一个拼写长字符串的函数中,若出现ora-06502或者ora-06512的错误,则有可能是在拼串的过程中,数据类型的隐式转换出了问题,如:字符类型转为数字,此时会出现错误. 解决方案:在拼串 ...
- win10自带虚拟机Hyper V联网
在控制面板里打开程序和功能 打开启用或关闭windows 功能 勾选Hyper-V 在windows 管理工具打开Hyper-V 管理器 打开虚拟交换机管理器 ...
- 调查显示数据分析已取代Web开发成为第一用例
一项关于Python的开发者调查显示,编程语言现在主要用于数据分析,取代了之前的第一个用例Web开发. 去年秋天,由Python软件基金会和开发人员工具供应商JetBrains进行,2018 Pyth ...