题目

https://www.lydsy.com/JudgeOnline/problem.php?id=4818

思路

先考虑没有质数限制

dp是在同余系下的,所以\(f[i][j]\)表示前i个点,和为j的方案数

转移就是\(f[i][j]=f[i-1][k]+g[(j-k)\%p]\)

g[i]是x%p==i出现的个数

有质数的话

用tot-无质数

无质数就在g[i]上删去质数出现的个数,再跑一边

但是!!

n很大,应该是带个log的

矩阵优化吧

代码

#include <bits/stdc++.h>
using namespace std;
const int mod = 20170408;
const int N = 1e5 + 7;
int read() {
int x = 0, f = 1;
char s = getchar();
for (; s > '9' || s < '0'; s = getchar())
if (s == '-')
f = -1;
for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int n, m, p;
int pri[2000008], cnt;
bool vis[20000008];
void get_pri(int n) {
vis[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!vis[i])
pri[++cnt] = i;
for (int j = 1; i * pri[j] <= n && j <= cnt; ++j) {
vis[i * pri[j]] = 1;
if (i % pri[j] == 0)
break;
}
}
}
struct node {
int ch[201][201];
} a, b, c;
node mul(node a, node b) {
node c = {};
for (int i = 0; i < p; ++i)
for (int k = 0; k < p; ++k)
for (int j = 0; j < p; ++j) c.ch[i][j] = (c.ch[i][j] + 1LL * a.ch[i][k] * b.ch[k][j] % mod) % mod;
return c;
}
node q_pow(node a, int nb) {
node ans = {};
for (int i = 0; i < p; ++i) ans.ch[i][i] = 1;
while (nb) {
if (nb & 1)
ans = mul(ans, a);
a = mul(a, a);
nb >>= 1;
}
return ans;
}
int g[200];
int main() {
// freopen("count.in","r",stdin);
// freopen("count.out","w",stdout);
n = read(), m = read(), p = read();
get_pri(m);
// one
for (int i = 1; i <= m; ++i) g[i % p]++;
for (int i = 0; i < p; ++i)
for (int j = 0; j < p; ++j) a.ch[i][j] = g[(i - j + p) % p];
for (int i = 0; i < p; ++i) b.ch[i][0] = g[i];
c = mul(q_pow(a, n - 1), b);
int ans = c.ch[0][0];
memset(g, 0, sizeof(g));
memset(a.ch, 0, sizeof(a.ch));
memset(b.ch, 0, sizeof(b.ch));
memset(c.ch, 0, sizeof(c.ch)); // two
for (int i = 1; i <= m; ++i)
if (vis[i])
g[i % p]++;
for (int i = 0; i < p; ++i)
for (int j = 0; j < p; ++j) a.ch[i][j] = g[(i - j + p) % p];
for (int i = 0; i < p; ++i) b.ch[i][0] = g[i];
c = mul(q_pow(a, n - 1), b);
ans -= c.ch[0][0];
ans = (ans % mod + mod) % mod;
printf("%d",ans);
return 0;
}
/*
3 5 3
*/

[Sdoi2017]序列计数 矩阵优化dp的更多相关文章

  1. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  2. Luogu3702 SDOI2017 序列计数 矩阵DP

    传送门 不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的. 而且转移矩阵是循环矩阵,所以可以只用第一 ...

  3. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  4. 【BZOJ4818】【SDOI2017】序列计数 [矩阵乘法][DP]

    序列计数 Time Limit: 30 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序 ...

  5. bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】

    被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...

  6. 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...

  7. BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法

    发现转移矩阵是一个循环矩阵. 然后循环矩阵乘以循环矩阵还是循环矩阵. 据说还有FFT并且更优的做法. 之后再看吧 #include <map> #include <cmath> ...

  8. luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥

    现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...

  9. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

随机推荐

  1. Sitecore营销自动化

    增加与战略性自动化营销系统的互动 Sitecore营销自动化基于DMS中的Sitecore个性化功能.营销自动化系统使用诸如位置,设备和先前访问或购买之类的客户数据来影响用户沿着购买路径的旅程.这些系 ...

  2. codeforces 984B Minesweeper

    题意: 给出一个矩阵,如果一个格子是数字,那么与这个格子相邻的格子中有炸弹的数量必须等于这个格子中的数字: 如果一个格子是空地,那么这个格子的所有相邻的格子中就不能有炸弹. 判断这个矩阵是否合法. 思 ...

  3. make: *** /lib/modules/3.10.0-327.el7.x86_64/build: 没有那个文件或目录。 停止。

    1.问题: [root@localhost]# make make -C /lib/modules/-.el7.x86_64/build M=/home/csri/poc/adore modules ...

  4. UVALive 3295 Counting Triangles

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  5. [转载]js 获取ASP RadioButtonList 选中的值

    var planList=document.all ('rblPlanType');    for(var i=1;i<planList.length;i++)    {     if(plan ...

  6. .net core创建项目(指令方式)

    所谓的指令创建项目,就是不用再已安装的VS2015的环境下或者VS Core下创建,直接通过DOS指令创建也是OK的. 1.找到你所准备保存项目的项目文件夹(你也可以到某个目录用指令创建项目文件夹[  ...

  7. 怎样从外网访问内网Redis数据库?

    本地安装了一个Redis数据库,只能在局域网内访问到,怎样从外网也能访问到本地的Redis数据库呢?本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Redis数据库 默认安装的Redis ...

  8. docker 常用操作

    1,安装 .检查内核版本,必须是3.10及以上 uname ‐r .安装docker yum install docker .输入y确认安装 .启动docker [root@localhost ~]# ...

  9. SVN的标准目录结构

    SVN目录规范 在visualSVN中创建仓库时,可以选择svn目录结构 Trunk主干目录,此目录下的文件为基准文件. Brancher 用于开发的分支目录 Tags用于发布的版本目录 假设有一个项 ...

  10. ssh-keygen 命令

    功能 生成.管理和转换认证密钥,包括 RSA 和 DSA 两种密钥,密钥类型可以用 -t 选项指定.如果没有指定则默认生成用于SSH-2的RSA密钥,系统管理员还可以用它产生主机密钥. 通常,这个程序 ...