一:基本概念

  • 1、使用图(graphs)来表示计算任务
  • 2、在被称之为会话(Session)的上下文(context)中执行图
  • 3、使用tensor表示数据
  • 4、通过变量(Variable)维护状态
  • 5、使用feed和fetch可以为任意的操作赋值或者从其中获取数据

TensorFlow是一个编程系统,使用图(graphs)来表示计算任务,图(graphs)中的节点称之为op(operation),一个op获得0个或多个tensor,执行计算,产生0个或多个tensor。tensor看做是一个n维的数组或列表。图必须在会话(Session)里被启动。

二:TensorFlow结构

三:简单练习

1、热身前技巧:

a、首先在桌面创建一个专门用来存放TensorFlow代码的文件夹,以后把全部和TensorFlow相关的代码存放在该文件夹下。

b、打开jupyter:首先打开系统终端(cmd):进入刚才创建的存放代码的文件夹(比如我的study_tensor)输入:cd C:\Users\felix\Desktop\study_tensor

进入后输入jupyter notebook

会再浏览器中打开jupyter notebook的编辑环境。(这样打开的话,默认jupyter的工作环境就是刚才创建的文件夹了)

新建工作环境。

如下图表示成功进入工作环境:

2、切入正题,撸代码

shift+enter  执行代码

tab  代码提示

shift+tab  详情提示

a、创建图和启动图

import tensorflow as tf

# 创建一个常量op
m1=tf.constant([[3,3]])
# 创建一个常量op
m2=tf.constant([[2],[3]])
# 创建一个矩阵乘法的op,把m1,m2传入
product=tf.matmul(m1,m2)
print(product) #直接打印并没有执行 # 定义一个会话,自动默认图
sess=tf.Session()
# 调用sess的run方法来执行矩阵乘法op
# run(product)触发图中3个op
result=sess.run(product)
print(result)
sess.close() # 关闭 # 将上一句简化
with tf.Session() as sess:
# 调用sess的run方法来执行矩阵乘法op
# run(product)触发图中3个op
result=sess.run(product)
print(result)

创建图,启动图

图中的每一个代码块都执行了。(按shift+enter执行)

b、变量

import tensorflow as tf

x=tf.Variable([1,2]) # 创建一个变量op
a=tf.constant([3,3]) # 创建一个常量op
# 增加一个减法op
sub=tf.subtract(x,a)
# 增加一个加法op
add=tf.add(x,sub)
# 初始化全部的变量,不初始化会出问题
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)# 先进行变量的初始化
print(sess.run(sub))
print(sess.run(add)) state=tf.Variable(0,name='counter')# 初始化变量为0,可以给变量起名字
new_value=tf.add(state,1) # 创建一个op,作用是使state加1
update=tf.assign(state,new_value) # 将后面的值赋值给前面的值,赋值op
# 初始化全部的变量,不初始化会出问题
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)# 先进行变量的初始化
print(sess.run(state))
for i in range(5):
sess.run(update)
print(sess.run(state))

变量

c、fetch和feed

import tensorflow as tf

# fetch 可以执行多个op
input1=tf.constant(3.0)
input2=tf.constant(2.0)
input3=tf.constant(5.0) add=tf.add(input2,input3)
mul=tf.multiply(input1,add) # 乘法op with tf.Session() as sess:
result=sess.run([mul,add]) # 同时运行多个op,就是fetch
print(result) # feed 以字典的形式传入值
input1=tf.placeholder(tf.float32) # 创建一个占位符,具体的值可以在运行的时候传入
input2=tf.placeholder(tf.float32) # 创建一个占位符
output=tf.multiply(input1,input2) with tf.Session() as sess:
# feed的数据以字典的形式传入
result=sess.run(output,feed_dict={input1:[7.0],input2:[2.0]})
print(result)

fetch和feed

d、简单示例-优化线性模型,使模型接近样本

import tensorflow as tf
import numpy as np # pip3 install numpy安装 # 使用numpy生成100个随机点
# 样本
x_data=np.random.rand(100)
y_data=x_data*0.1+0.2 # 直线 标准直线 # 构造一个线性模型
b=tf.Variable(0.0)
k=tf.Variable(0.0)
y=k*x_data+b # 使用TensorFlow优化k 和 b 来优化线性模型,使其接近样本 # 二次代价函数
loss=tf.reduce_mean(tf.square(y_data-y)) # reduce_mean求平均值,tf.square计算平方
# 定义一个梯度下降法来进行训练的优化器
optimizer=tf.train.GradientDescentOptimizer(0.2) # 0.2为学习率,梯度下降的优化器
# 最小化代价函数
train=optimizer.minimize(loss) # 初始化变量
init=tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)# 初始化
for step in range(201):# 进行迭代
sess.run(train)
if step%20==0: # 每20次输出一次结果
print(step,sess.run([k,b])) # 发现结构k值越来越接近0.1,b值越来越接近0.2

简单示例 优化线性模型

TensorFlow(二):基本概念以及练习的更多相关文章

  1. 1.Tensorflow的基本概念:

    1.Tensorflow的基本概念: 1.使用图(graphs)来表示计算任务 2.在被称之为会话(Session)的上下文(context)中执行图 3.使用tensor表示数据 4.通过变量(Va ...

  2. Tensorflow的基本概念与常用函数

    Tensorflow一些常用基本概念与函数(一) 1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf ...

  3. Tensorflow学习:(一)tensorflow框架基本概念

    一.Tensorflow基本概念 1.使用图(graphs)来表示计算任务,用于搭建神经网络的计算过程,但其只搭建网络,不计算 2.在被称之为会话(Session)的上下文(context)中执行图 ...

  4. tensorflow(二)----线程队列与io操作

    一.队列和线程 1.队列: 1).tf.FIFOQueue(capacity, dtypes, name='fifo_queue') 创建一个以先进先出的顺序对元素进行排队的队列 参数: capaci ...

  5. 2016 - 2 - 20 ARC知识总结(二 autorelease概念及实现)

    首先祝自己生日快乐~23咯~ 一  autorelease的概念 autorelease会像C语言的自动变量那样来对待对象实例.当超出作用域(相当于变量作用域)时,对象的实例release实力方法被调 ...

  6. 【Samza系列】实时计算Samza中文教程(二)——概念

    希望上一篇背景篇让大家对流式计算有了宏观的认识,本篇依据官网是介绍概念,先让我们看看有哪些东西呢?     概念一:Streams     Samza是处理流的.流则是由一系列不可变的一种相似类型的消 ...

  7. TensorFlow[1]:概念和简例

    简介 TensorFlow是一个实现机器学习算法的接口,也是执行机器学习算法的框架.使用数据流式图规划计算流程,可以将计算映射到不同的硬件和操作系统平台. 主要概念 TensorFlow的计算可以表示 ...

  8. 从零开始学JavaScript二(基本概念)

    基本概念 一.区分大小写 在ECMAScript中的一切(变量.函数名.操作符)都是区分大小写的. 如变量名test和Test分别表示两个不同的变量, 二.标识符 所谓标识符,就是指变量.函数.属性的 ...

  9. PowerDesigner教程系列(二)概念数据模型

    目标:本文主要介绍PowerDesigner概念数据模型以及实体.属性创建.一.新建概念数据模型1)选择File-->New,弹出如图所示对话框,选择CDM模型(即概念数据模型)建立模型. 2) ...

随机推荐

  1. CH02基于ZYNQ的嵌入式LINUX移植

    CH02基于ZYNQ的嵌入式LINUX移植 1.1概述 实验环境: Windows 10 专业版 Vmware workstation 14.1.1 Ubuntu 16.04.3 Xilinx SDx ...

  2. Kafka 的这些原理你知道吗

    如果只是为了开发 Kafka 应用程序,或者只是在生产环境使用 Kafka,那么了解 Kafka 的内部工作原理不是必须的.不过,了解 Kafka 的内部工作原理有助于理解 Kafka 的行为,也利用 ...

  3. shiro与spring集成

    简介 Apache Shiro 是 Java 的一个安全(权限)框架.主要提供了认证.授权.加密和会话管理等功能. Authentication:身份认证/登录,验证用户是不是拥有相应的身份:Auth ...

  4. vue cli3 项目优化

    vue-cli3 Prefetch (官网内容) <link rel="prefetch"> 是一种 resource hint,用来告诉浏览器在页面加载完成后,利用空 ...

  5. SpringCloud使用Consul作为分布式配置中心

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_36027670/article/de ...

  6. .NET Framework 4安装问题

    1.安装时,系统提示:运行此安装程序之前,必须安装 32 位 Windows 映像处理组件(WIC). http://www.microsoft.com/downloads/zh-cn/details ...

  7. 解决:error LNK1169: 找到一个或多个多重定义的符号

    每一个c++项目中可以包含多个cpp文件和.h文件,不过只能有而且必须有一个cpp文件中包含main函数,否则就会报错.所以在一个c++项目中不能单独运行一个cpp文件,只能运行一个项目.如果你想一个 ...

  8. Python——pip的安装与使用

    pip 是 Python 包管理工具,该工具提供了对Python 包的查找.下载.安装.卸载的功能.目前如果你在 python.org 下载最新版本的安装包,则是已经自带了该工具.Python 2.7 ...

  9. JAVA 插入注解处理器

    JDK1.5后,Java语言提供了对注解(Annotation)的支持 JDK1.6中提供一组插件式注解处理器的标准API,可以实现API自定义注解处理器,干涉编译器的行为. 在这里,注解处理器可以看 ...

  10. 判断上传文件是否为excel

    1. 可以在input上传组件上添加属性accept,这样上传文件的时候,就只能选择excel文件了. <input type="file" accept="app ...