package URL1

import org.apache.spark.Partitioner

import scala.collection.mutable

class MyPartitioner(val num:Array[String]) extends Partitioner{
val parMap=new mutable.HashMap[String,Int]()
var count=
for(i<-num){
parMap.put(i,count)
count +=
} //分区数目
override def numPartitions: Int = num.length //分区的规则
//def getPartition(key: Any): Int:这个函数需要对输入的key做计算,然后返回该key的分区ID,范围一定是0到numPartitions-1
override def getPartition(key: Any): Int = {
// 将对象转换为指定类型;
val tople=key.asInstanceOf[(String,String)]
val subject=tople._1
this.parMap(subject) }
}
package URL1

class Orders extends Ordering[((String,String),Int)]{
override def compare(x: ((String, String), Int), y: ((String, String), Int)): Int = {
x._2-y._2
}
}
package URL1

import java.net.URL

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable object teacher {
def main(args: Array[String]): Unit = {
val cof=new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
val sc=new SparkContext(cof) val lines=sc.textFile("E:\\teacher.log") val result1:RDD[((String,String),Int)]=lines.map( tp=>{
val teacher=tp.split("/").last
val host=new URL(tp).getHost
val subject=host.substring(,host.indexOf("."))
((subject,teacher),)
}) //科目
val subject=result1.map(tp=>tp._1._1).distinct().collect() //分区
val partitions=new MyPartitioner(subject) //业务逻辑
//1.全局TOPN
// val result2=result1.reduceByKey(partitions,_+_).sortBy(-_._2).take(2).foreach(println) //1.全局TOPN
val result3=result1.foreachPartition(tp=>{
val treeSet=new mutable.TreeSet[((String,String),Int)]()(new Orders) tp.foreach(tp=>{
treeSet.add(tp)
if(treeSet.size>){
treeSet.dropRight()
}
}) treeSet.foreach(println)
}) sc.stop()
}
}

teacher.log

http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://php.baidu.cn/laoli
http://php.baidu.cn/laoliu
http://php.baidu.cn/laoli
http://php.baidu.cn/laoli

Spark分区实例(teacher)的更多相关文章

  1. Spark Job-Stage-Task实例理解

    Spark Job-Stage-Task实例理解 基于一个word count的简单例子理解Job.Stage.Task的关系,以及各自产生的方式和对并行.分区等的联系: 相关概念 Job:Job是由 ...

  2. 【原创 Hadoop&Spark 动手实践 6】Spark 编程实例与案例演示

     [原创 Hadoop&Spark 动手实践 6]Spark 编程实例与案例演示 Spark 编程实例和简易电影分析系统的编写 目标: 1. 掌握理论:了解Spark编程的理论基础 2. 搭建 ...

  3. 【Spark 深入学习-08】说说Spark分区原理及优化方法

    本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什 ...

  4. Spark学习之路 (十七)Spark分区

    一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务 ...

  5. Spark(十一)Spark分区

    一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务 ...

  6. spark分区

    spark默认的partition的分区数是和本机CPU的核数保持一致: bucket的数量和reduce的数量一致:buket的概念是map会将计算获得数据放到各个buket中,每个bucket和一 ...

  7. Spark Streaming实例

    Spark Streaming实例分析 2015-02-02 21:00 4343人阅读 评论(0) 收藏 举报  分类: spark(11)  转载地址:http://www.aboutyun.co ...

  8. Spark学习之路 (十七)Spark分区[转]

    分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个 ...

  9. Hive和Spark分区策略

    1.概述 离线数据处理生态系统包含许多关键任务,最大限度的提高数据管道基础设施的稳定性和效率是至关重要的.这边博客将分享Hive和Spark分区的各种策略,以最大限度的提高数据工程生态系统的稳定性和效 ...

随机推荐

  1. nginx 访问控制模块

    截图,代码截屏均引用自慕课网nginx相关教学视频 基于用户的访问控制模块 http_access_module 基于用户登录信任的模块 http_access_module 参数示意:address ...

  2. 题解 最长上升序列2 — LIS2

    最长上升序列2 - LIS2 Description 已知一个 1 ∼ N 的排列的最长上升子序列长度为 K ,求合法的排列个数. Input 输入一行二个整数 N , K ( K ≤ N ≤ 15) ...

  3. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  4. python爬虫添加请求头

    request import requests headers = { # 'Accept': 'application/json, text/javascript, */*; q=0.01', # ...

  5. 强制类型转换之String类型

    ㈠布尔(Boolean)类型 布尔值只有两个,主要用来做逻辑判断 true   表示真 :   false   表示假 使用typeof检查一个布尔值时,会返回boolean   ㈡Null和Unde ...

  6. virtualbox使用xshell配置以及共享文件夹设置

    1.virtualbox NAT网络配置后,host xshell访问 设置映射 登陆: ssh 127.0.0.1 2.virtualbox共享文件(host---->guest) 1.安装增 ...

  7. vue中使用elementUi (分页器的使用)

    1.安装 npm i element-ui -S 2.在main.js中引入 import ElementUI from 'element-ui' import 'element-ui/lib/the ...

  8. AcWing:175. 电路维修(bfs)

    达达是来自异世界的魔女,她在漫无目的地四处漂流的时候,遇到了善良的少女翰翰,从而被收留在地球上. 翰翰的家里有一辆飞行车. 有一天飞行车的电路板突然出现了故障,导致无法启动. 电路板的整体结构是一个R ...

  9. Oracle-sql*plus

    连接命令 (1)conn[ect] 用法: conn 用户名/密码@网络服务名 [as sysdba/sysoper] 当用特权用户身份连接时,必须带上 as sysdba 或是 as sysoper ...

  10. HTTP中GET与POST的区别颠覆式的理解

    关于http中的get和post你轻轻松松的给出了一个“标准答案”: GET在浏览器回退时是无害的,而POST会再次提交请求. GET产生的URL地址可以被Bookmark,而POST不可以. GET ...