np的concatenate和pandas的groupby
1. concatenate
concatenate函数可以实现对两个张量进行拼接,这个张量可以实一维向量,二维矩阵等等
1. 首先定义四个列表,然后用concatenate把他们拼接起来,这里我设axis=0
name = ['jack', 'ross', 'john', 'blues', 'frank', 'bitch', 'haha', 'asd', 'loubin']
age = [12, 32, 23, 4,32,45,65,23,65]
married = [1, 0, 1, 1, 0, 1, 0, 0, 0]
gender = [0, 0, 0, 0, 1, 1, 1, 1, 1] matrix = np.concatenate((name, age, married, gender), axis=0)
print(matrix)
运行结果如下
C:\software\Anaconda\envs\ml\python.exe C:/学习/python/科比生涯数据分析/venv/groupy.py
['jack' 'ross' 'john' 'blues' 'frank' 'bitch' 'haha' 'asd' 'loubin' ''
'' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
'' '' '' '' '' '' '' '' '' '']
达到的效果是直接把四个列表给拼接成了一个大的列表,长度是36。下面我们尝试用axis=1来拼接
name = ['jack', 'ross', 'john', 'blues', 'frank', 'bitch', 'haha', 'asd', 'loubin']
age = [12, 32, 23, 4,32,45,65,23,65]
married = [1, 0, 1, 1, 0, 1, 0, 0, 0]
gender = [0, 0, 0, 0, 1, 1, 1, 1, 1] matrix = np.concatenate((name, age, married, gender), axis=1)
运行结果报错如下
C:\software\Anaconda\envs\ml\python.exe C:/学习/python/科比生涯数据分析/venv/groupy.py
Traceback (most recent call last):
File "C:/学习/python/科比生涯数据分析/venv/groupy.py", line 15, in <module>
matrix = np.concatenate((name, age, married, gender), axis=1)
numpy.AxisError: axis 1 is out of bounds for array of dimension 1
原因很简单,运行name.shape就可以发现,上面的列表shape属性是(9, ),也就是说他们的shape[0] 是9, 而shape[1]不存在,所以axis=1是对不存在的维度进行
操作。没错axis = k 就可以理解为对shape[k]所代表的维度进行操作。下面我们来验证以下
将以上的列表变成(1, 9)的矩阵,用numpy完成
name = np.array([['jack', 'ross', 'john', 'blues', 'frank', 'bitch', 'haha', 'asd', 'loubin']])
age = np.array([[12, 32, 23, 4,32,45,65,23,65]])
married = np.array([[1, 0, 1, 1, 0, 1, 0, 0, 0]])
gender = np.array([[0, 0, 0, 0, 1, 1, 1, 1, 1]]) matrix = np.concatenate((name, age, married, gender), axis=0)
print(matrix)
运行结果如下,因为这个时候, name,age, married, gender的shape都是(1, 9),所以axis=0时,拼接对shape[0]操作,结果就是(4, 9)的矩阵
C:\software\Anaconda\envs\ml\python.exe C:/学习/python/科比生涯数据分析/venv/groupy.py
[['jack' 'ross' 'john' 'blues' 'frank' 'bitch' 'haha' 'asd' 'loubin']
['' '' '' '' '' '' '' '' '']
['' '' '' '' '' '' '' '' '']
['' '' '' '' '' '' '' '' '']]
试一下将axis改成1,那么结果因该就是(1, 36)的矩阵了
name = np.array([['jack', 'ross', 'john', 'blues', 'frank', 'bitch', 'haha', 'asd', 'loubin']])
age = np.array([[12, 32, 23, 4,32,45,65,23,65]])
married = np.array([[1, 0, 1, 1, 0, 1, 0, 0, 0]])
gender = np.array([[0, 0, 0, 0, 1, 1, 1, 1, 1]]) matrix = np.concatenate((name, age, married, gender), axis=1)
[['jack' 'ross' 'john' 'blues' 'frank' 'bitch' 'haha' 'asd' 'loubin' ''
'' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
'' '' '' '' '' '' '' '' '' '']]
2.groupby函数
groupyby可以接受datafram的列名作为参数,将原始数据按照列名进行分组。利用第一部分的数据说明
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt name = np.array([['jack', 'ross', 'john', 'blues', 'frank', 'bitch', 'haha', 'asd', 'loubin']])
age = np.array([[12, 32, 23, 4,32,45,65,23,65]])
married = np.array([[1, 0, 1, 1, 0, 1, 0, 0, 0]])
gender = np.array([[0, 0, 0, 0, 1, 1, 1, 1, 1]]) matrix = np.concatenate((name, age, married, gender), axis=0)
matrix = matrix.T data = pd.DataFrame(data=matrix, columns=['name', 'age', 'married', 'gender'])
print(data)
运行结果如下,生成了一个datafram
C:\software\Anaconda\envs\ml\python.exe C:/学习/python/科比生涯数据分析/venv/groupy.py
name age married gender
0 jack 12 1 0
1 ross 32 0 0
2 john 23 1 0
3 blues 4 1 0
4 frank 32 0 1
5 bitch 45 1 1
6 haha 65 0 1
7 asd 23 0 1
8 loubin 65 0 1
在上面的代码基础上再增加以下代码
gs = data.groupby('gender')
print(len(gs))
for g in gs:
print(g)
运行结果如下
2
('', name age married gender
0 jack 12 1 0
1 ross 32 0 0
2 john 23 1 0
3 blues 4 1 0)
('', name age married gender
4 frank 32 0 1
5 bitch 45 1 1
6 haha 65 0 1
7 asd 23 0 1
8 loubin 65 0 1)
通过data.groupy('gender')生成了一个分类器gs,但是gs不能直接展示数据,要通过for循环来获取gs中的数据。这里运行len(gs)可以发现gs的长度时2,因为gender
属性只有两个值,所以gs的长度就是类别数。然后对于gs中的每一个g,是一个元组,由两部分组成,第一部分是类别值,第二部分是该类别下的datafram数据集。
np的concatenate和pandas的groupby的更多相关文章
- pandas之groupby分组与pivot_table透视
一.groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下. df.groupby(by=None, axis=0, level=None, as_index=True, so ...
- pandas获取groupby分组里最大值所在的行,获取第一个等操作
pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...
- python处理数据的风骚操作[pandas 之 groupby&agg]
https://segmentfault.com/a/1190000012394176 介绍 每隔一段时间我都会去学习.回顾一下python中的新函数.新操作.这对于你后面的工作是有一定好处的.本文重 ...
- pandas之groupby分组与pivot_table透视表
zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...
- Pandas之groupby分组
释义 groupby用来分组,调用groupby 之后返回pandas.core.groupby.generic.DataFrameGroupBy,其实就是由一个个格式为(key, 分组后的dataf ...
- pandas 之 groupby 聚合函数
import numpy as np import pandas as pd 聚合函数 Aggregations refer to any data transformation that produ ...
- Pandas之groupby( )用法笔记
groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True ...
- pandas中groupby的参数:as_index
参考:https://blog.csdn.net/cjsyr6wt/article/details/78200444?locationNum=11&fps=1 以下是pandas官方的解释: ...
- Pandas使用groupby()时是否会保留顺序?
PythonPandas:使用groupby()和agg()时是否保留了顺序? 看到这个增强问题 简短的答案是肯定的,groupby会保留传入的顺序.你可以用你的例子来证明这一点: df = pd.D ...
随机推荐
- Promise中有多个resove
return new Promise((resolve, reject) => { resolve({ status: }) if (true) { resolve({ status: }) } ...
- shell的正则表达式
正则表达式处理文件的内容,shell处理文件本身 grep *匹配0到n个 .(点儿)能匹配任意字符----8.8.8.8用于测试外网是否通畅 egrep
- Navicat for Mysql查询结果导出无表名
在查询窗口用select语句按条件查出所需结果,然后用“导出向导”把查询结果导成sql文件,但是导出来的sql语句没有表名了. 导成的sql文件大致是这样的, INSERT INTO `` (`id` ...
- nodejs基础一
Node.js是一个基于Chrome V8引擎的JavaScript运行. js的运行环境 运行js有两种: .js文件方式 交互(REPL): node 回车进入交互模式 .exit 退出交互模式 ...
- 【51nod 2004】终结之时
题目大意 "将世界终结前最后的画面,深深刻印进死水般的心海." 祈愿没有得到回应,雷声冲破云霄,正在祈愿的洛天依受到了极大的打击. 洛天依叹了口气,说:"看来这个世界正如 ...
- ESlint配置案例及如何配置
1.中文官网: https://eslint.cn/ 2.先看一个写好的eslint规则: 3.下面再给一个例子 module.exports = { "parser": &quo ...
- php有哪些cms框架
内容管理系统或CMS是一个用于管理新闻的应用程序,用户可以从后台管理系统发布.编辑和删除文章.HTML 和其他脚本语言不需要操作CMS,尽管使用它们会增加更多优势.无疑php的cms框架是最多的,国内 ...
- 交换机配置—— 结合以太通道的VLAN配置
一.实验目的:建立以太通道使相同VLAN下主机互通 二.拓扑图如下 三.具体步骤如下 (1)S1三层交换机配置 Switch>enableSwitch#config terminalEnter ...
- [CSP-S模拟测试]:地理课(并查集+线段树分治)
题目传送门(内部题146) 输入格式 从$geography.in$读入数据. 第一行两个数$n,m$,表示有$n$个点,$m$个时刻.接下来$m$行每行三个数,要么是$1\ u\ v$,要么是$2\ ...
- Mybatis内置的日志工厂提供日志功能
Mybatis内置的日志工厂提供日志功能,具体的日志实现有以下几种工具: SLF4J Apache Commons Logging Log4j 2 Log4j JDK logging 具体选择哪个日志 ...