Transformation

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4578

Problem Description

Yuanfang is puzzled with the question below:

There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.

Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.

Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.

Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.

Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.

Yuanfang has no idea of how to do it. So he wants to ask you to help him.

Input

There are no more than 10 test cases.

For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.

Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)

The input ends with 0 0.

Output

For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.

Sample Input

    5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

    307
7489

题意

给你一个序列,支持四种操作

1.区间加法

2.区间乘法

3.区间减法

4.求和,平方和,立方和 即\(\large \sum_{i=l}^{r}{a_i^p}(1\le p\le 3)\)

题解

一开始看到这道题,觉得可以用数学公式搞搞,搞了半天确实搞出了个公式,用sum1,sum2,sum3分别存和,平方和,立方和,然后合并的时候再搞

搞。但是感觉很麻烦,于是先上网查了查正解是不是有什么巧妙的方法。但是看完网上题解,我才发现都是用的玄学复杂度。

于是我就愉快地也跟着各位大佬一样玄学操作啦。

具体操作:还是用线段树,遇到一段连续相同的区间就可以马上得到答案,其余部分直接暴力就行,我寻思着只要先把每个数都变得不一样然后求所有数的立方和,直接就暴了(别想那么多,这题纯属娱乐)。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 100050
#define mo 10007
ll n,m;
struct Node{ll l,r,lazy;};
struct segmentTree
{
Node tr[N<<2];
void push_up(ll x);
void push_down(ll x);
void bt(ll x,ll l,ll r);
void add(ll x,ll l,ll r,ll tt);
void multiply(ll x,ll l,ll r,ll tt);
void cover(ll x,ll l,ll r,ll tt);
ll query(ll x,ll l,ll r,ll tt);
}seg;
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void segmentTree::push_up(ll x)
{
if(tr[x].l==tr[x].r)return;
Node &a=tr[x<<1],&b=tr[x<<1|1];
if (a.lazy==b.lazy&&tr[x].lazy==-1)tr[x].lazy=a.lazy;
}
void segmentTree::push_down(ll x)
{
if (tr[x].lazy==-1)return;
tr[x<<1].lazy=tr[x].lazy;
tr[x<<1|1].lazy=tr[x].lazy;
tr[x].lazy=-1;
}
void segmentTree::bt(ll x,ll l,ll r)
{
tr[x]=Node{l,r,0};
if (l==r)return;
ll mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::add(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy+=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)add(x<<1,l,r,tt);
if (mid<r)add(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::multiply(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy*=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)multiply(x<<1,l,r,tt);
if (mid<r)multiply(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::cover(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy=tt%mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)cover(x<<1,l,r,tt);
if (mid<r)cover(x<<1|1,l,r,tt);
push_up(x);
}
ll segmentTree::query(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
ll ans=1;
for(ll i=1;i<=tt;i++)ans*=tr[x].lazy;
ans*=(tr[x].r-tr[x].l+1);
return ans%mo;
}
ll mid=(tr[x].l+tr[x].r)>>1,ans=0;
push_down(x);
if(l<=mid)ans+=query(x<<1,l,r,tt);
if(mid<r)ans+=query(x<<1|1,l,r,tt);
push_up(x);
return ans%mo;
}
void work()
{
read(n); read(m);
if (n+m==0)exit(0);
seg.bt(1,1,n);
for(ll i=1;i<=m;i++)
{
ll id,x,y,tt;
read(id); read(x); read(y); read(tt);
if (id==1)seg.add(1,x,y,tt);
if (id==2)seg.multiply(1,x,y,tt);
if (id==3)seg.cover(1,x,y,tt);
if (id==4)printf("%lld\n",seg.query(1,x,y,tt));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
while(1)work();
}

HDU 4578 线段树玄学算法?的更多相关文章

  1. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  2. HDU - 4578 线段树+三重操作

    这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...

  3. hdu 4578 线段树 ****

    链接:点我  1

  4. K - Transformation HDU - 4578 线段树经典题(好题)

    题意:区间  加   变成定值 乘  区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题  设3个Lazy 标记分别为  change 改变mul乘 add加  优先度change>m ...

  5. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  6. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

随机推荐

  1. 第一次Java测试及感触(2018.9.20)

    在本周周四进行了java测试,有一点感触,测试的题目是用Java实现一个ATM机的管理系统.之前老师提前给我们样卷,结果考试的时候换了题型,瞬间脑子空白,一时不知道怎么下手,因为暑假虽然涉猎了java ...

  2. MySQL inodb cluster部署

    innodb cluster是基于组复制来实现的. 搭建一套MySQL的高可用集群innodb. 实验环境: IP 主机名 系统 软件 192.168.91.46 master RHEL7.4 mys ...

  3. WebService基础学习

    参考 WebService基础学习(一)—基础知识:http://www.cnblogs.com/yangang2013/p/5708647.html WebService基础学习(二)—三要素:ht ...

  4. JS -- Unexpected trailing comma

    Unexpected trailing comma 后面多了一个逗号

  5. CXF框架构建和开发 Services

    Apache CXF 是一个开源的 Services 框架,CXF 帮助您来构建和开发 Services 这些 Services 可以支持多种协议,比如:SOAP.POST/HTTP.RESTful ...

  6. Java 正则判断一个字符串中是否包含中文

    使用正则判断一个字符串中是否包含中文或者中文字符 代码实现如下: import java.util.regex.Matcher; import java.util.regex.Pattern; /** ...

  7. iOS tableview的常用delegate和dataSource执行顺序

    在这次项目中遇到了一个特别奇葩的问题:表视图创建的cell在7以上的系统能正常运行显示,在模拟器上就不能正常实现......为解决这个问题,纠结了好久...... 对在7系统上不显示的猜测: 用mas ...

  8. ubuntu kylin 18.04 使用 wine 安装 EasyConnect 的windows版本

    首先下载wine: sudo apt-get install wine-stable 然后使用wine安装安装包EXE文件(安装包你自己去下): wine EasyConnectInstaller.e ...

  9. Python使用hashlib模块做字符串加密

    #-*- encoding:gb2312 -*- import hashlib a = "a test string" print 'md5 = %s' % (hashlib.md ...

  10. webdriervAPI(CSS定位元素)

    from  selenium  import  webdriver driver  =  webdriver.Chorme() driver.get("http://www.baidu.co ...