Transformation

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4578

Problem Description

Yuanfang is puzzled with the question below:

There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.

Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.

Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.

Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.

Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.

Yuanfang has no idea of how to do it. So he wants to ask you to help him.

Input

There are no more than 10 test cases.

For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.

Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)

The input ends with 0 0.

Output

For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.

Sample Input

    5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

    307
7489

题意

给你一个序列,支持四种操作

1.区间加法

2.区间乘法

3.区间减法

4.求和,平方和,立方和 即\(\large \sum_{i=l}^{r}{a_i^p}(1\le p\le 3)\)

题解

一开始看到这道题,觉得可以用数学公式搞搞,搞了半天确实搞出了个公式,用sum1,sum2,sum3分别存和,平方和,立方和,然后合并的时候再搞

搞。但是感觉很麻烦,于是先上网查了查正解是不是有什么巧妙的方法。但是看完网上题解,我才发现都是用的玄学复杂度。

于是我就愉快地也跟着各位大佬一样玄学操作啦。

具体操作:还是用线段树,遇到一段连续相同的区间就可以马上得到答案,其余部分直接暴力就行,我寻思着只要先把每个数都变得不一样然后求所有数的立方和,直接就暴了(别想那么多,这题纯属娱乐)。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 100050
#define mo 10007
ll n,m;
struct Node{ll l,r,lazy;};
struct segmentTree
{
Node tr[N<<2];
void push_up(ll x);
void push_down(ll x);
void bt(ll x,ll l,ll r);
void add(ll x,ll l,ll r,ll tt);
void multiply(ll x,ll l,ll r,ll tt);
void cover(ll x,ll l,ll r,ll tt);
ll query(ll x,ll l,ll r,ll tt);
}seg;
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void segmentTree::push_up(ll x)
{
if(tr[x].l==tr[x].r)return;
Node &a=tr[x<<1],&b=tr[x<<1|1];
if (a.lazy==b.lazy&&tr[x].lazy==-1)tr[x].lazy=a.lazy;
}
void segmentTree::push_down(ll x)
{
if (tr[x].lazy==-1)return;
tr[x<<1].lazy=tr[x].lazy;
tr[x<<1|1].lazy=tr[x].lazy;
tr[x].lazy=-1;
}
void segmentTree::bt(ll x,ll l,ll r)
{
tr[x]=Node{l,r,0};
if (l==r)return;
ll mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::add(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy+=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)add(x<<1,l,r,tt);
if (mid<r)add(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::multiply(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy*=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)multiply(x<<1,l,r,tt);
if (mid<r)multiply(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::cover(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy=tt%mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)cover(x<<1,l,r,tt);
if (mid<r)cover(x<<1|1,l,r,tt);
push_up(x);
}
ll segmentTree::query(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
ll ans=1;
for(ll i=1;i<=tt;i++)ans*=tr[x].lazy;
ans*=(tr[x].r-tr[x].l+1);
return ans%mo;
}
ll mid=(tr[x].l+tr[x].r)>>1,ans=0;
push_down(x);
if(l<=mid)ans+=query(x<<1,l,r,tt);
if(mid<r)ans+=query(x<<1|1,l,r,tt);
push_up(x);
return ans%mo;
}
void work()
{
read(n); read(m);
if (n+m==0)exit(0);
seg.bt(1,1,n);
for(ll i=1;i<=m;i++)
{
ll id,x,y,tt;
read(id); read(x); read(y); read(tt);
if (id==1)seg.add(1,x,y,tt);
if (id==2)seg.multiply(1,x,y,tt);
if (id==3)seg.cover(1,x,y,tt);
if (id==4)printf("%lld\n",seg.query(1,x,y,tt));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
while(1)work();
}

HDU 4578 线段树玄学算法?的更多相关文章

  1. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  2. HDU - 4578 线段树+三重操作

    这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...

  3. hdu 4578 线段树 ****

    链接:点我  1

  4. K - Transformation HDU - 4578 线段树经典题(好题)

    题意:区间  加   变成定值 乘  区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题  设3个Lazy 标记分别为  change 改变mul乘 add加  优先度change>m ...

  5. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  6. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

随机推荐

  1. RNN(一)——RNN和LSTM原理

    背景 神经网络,卷积神经网络等其他深度学习算法,都有个局限性,各个输入在算法内部是相对独立的.比如:'星际争霸有意思,我爱玩'这句话,是有上下文关系的. 如果放在其他网络里面,各个分词将会独立处理.但 ...

  2. js 选择文本

    怎么用js脚本,选中文本呢? // 获取selection对象 var selection = window.getSelection(); // 清空selection对象 selection.re ...

  3. python 安装 pyHook

    下载网站:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyhook 查看python版本 C:\Users\k\Desktop\file_trans> ...

  4. AcWing:241. 楼兰图腾(树状数组逆序对)

    在完成了分配任务之后,西部314来到了楼兰古城的西部. 相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀(‘V’),一个部落崇拜铁锹(‘∧’),他们分别用V和∧的形状来代表各自 ...

  5. ICEM—奇葩

    原视频下载地址:https://yunpan.cn/cSsbI89zP9Z4K  访问密码 a287

  6. adb的一些命令

    adb pull <手机路径> <本机路径> 从手机中拉取信息到本地电脑上 adb push <本机路径> <手机路径> 从本地电脑推送信息到手机上

  7. 深入探索REST(2):理解本真的REST架构风格

    文章转载地址:https://www.infoq.cn/article/understanding-restful-style/,如引用请标注文章原地址 引子 在移动互联网.云计算迅猛发展的今天,作为 ...

  8. git如何添加子模块以便方便使用别人维护的模块?

    答: 添加过程如下: 1. 在当前项目的源码下执行一下命令来添加子模块 git submoduel add <other_repository_url> <dir_name> ...

  9. SQL-W3School-高级:SQL Date 函数

    ylbtech-SQL-W3School-高级:SQL Date 函数 1.返回顶部 1. SQL 日期 当我们处理日期时,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配. 只要 ...

  10. mongodb 添加用户报错TypeError:db.addUser is not a function (mongodb3.4.1)

    1:问题如下: 原因是 新版的MongoDB已经不支持addUser方法了. 改成createUser了. 使用方法如下    2:具体解释一下db.createUser()方法的用法   定义: 创 ...