Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.
 
 
Runtime: 8 ms, faster than 19.93% of C++ online submissions for Predict the Winner.
Memory Usage: 5.1 MB, less than 0.75% of C++ online submissions for Predict the Winner.
 
 
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int N = nums.size(); vector<vector<int>> mtx(N+, vector<int>(N+, )); for(int gap = ; gap < nums.size(); gap++) {
for(int i=; i<nums.size()+; i++) {
for(int j=i; j <= i+gap && j <= N; j++) {
if(j == i) mtx[i][j] = nums[i-];
else if(j == i+) {
mtx[i][j] = max(nums[i-], nums[j-]);
mtx[j][i] = min(nums[i-], nums[j-]);
}
else {
int takeleft = mtx[j][i+] + nums[i-];
int takeright = mtx[j-][i] + nums[j-];
mtx[i][j] = max(takeleft, takeright);
if(takeleft > takeright) mtx[j][i] = mtx[i+][j];
else if(takeleft < takeright) mtx[j][i] = mtx[i][j-];
else mtx[j][i] = min(mtx[i+][j], mtx[i][j-]);
}
}
}
}
bool canwin = mtx[][N] >= mtx[N][];
return canwin;
}
};

LC 486. Predict the Winner的更多相关文章

  1. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  2. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  3. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  4. 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  5. 【leetcode】486. Predict the Winner

    题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...

  6. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

  7. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  8. [leetcode] 486. Predict the Winner (medium)

    原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...

  9. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

随机推荐

  1. Python基础——细琐知识点

    注释 Python注释有两种方式 使用# 类似于Shell脚本的注释方式,单行注释 使用'''或者""" 使用成对的'''或者""".这种注 ...

  2. 用来遍历map集合的方法

    map集合是以键值对进行存储值的,所以遍历map集合无非就是获取键和值,根据实际需求,进行获取键和值. 1.无非就是通过map.keySet()获取到值,然后根据键获取到值. for(String s ...

  3. Selenium常用API的使用java语言之3-selenium3 浏览器驱动

    1.下载浏览器驱动 当selenium升级到3.0之后,对不同的浏览器驱动进行了规范.如果想使用selenium驱动不同的浏览器,必须单独下载并设置不同的浏览器驱动. 各浏览器下载地址: Firefo ...

  4. 专为简化 C 开发而设计的编程语言 Trad

    Trad 是一个专为简化 C 开发而设计的编程语言,它: 基于 C: 经编译器编译后能得到干净可读的标准 C 代码,其与 C 的关系就像 TypeScript 与 JavaScript 一样 专为 U ...

  5. zookeeper 集群简单搭建,以及Error contacting service,It is probably not running问题解决

    第一步:现在http://www-eu.apache.org/dist/zookeeper/zookeeper-3.4.9/ 下载一个gz包,然后解压.当然,zookeeper 需要在java 的环境 ...

  6. 百度静态资源库CDN库, cdnjs库,引入JS

    不适用本地引入js文件,而使用其他服务器引入JS文件,1,减轻服务器压力2,速度快3,可以缓存 cdnjs库,更新比较快https://cdnjs.com/ cdn库 引入JS文件如:jquerybo ...

  7. React重置非受控组件state的方法

    如果想通过props来重置state的值.有3种方法: 1. 最好的方法:key属性 修改key属性的值,可以使组件卸载后重新加载.所有的状态全部重置. 这种情况可以给key设一个每次渲染都会改变的值 ...

  8. MongoDB 集群设置集合分片生效及查看集合分片情况

    一.设计DB分片与Collection分片 #连接mongos /opt/mongodb/mongodb-linux-x86_64-2.4.8/bin/mongo  127.0.0.1:27017   ...

  9. Postgresql 解决锁表

    转载地址:https://blog.csdn.net/cicon/article/details/68068462##一.postgresql解决锁表--查询是否锁表了select oid from ...

  10. PAT TOP 1005 Programming Pattern (35 分)哈希做法

    1005 Programming Pattern (35 分) Programmers often have a preference among program constructs. For ex ...