luogu P4755 Beautiful Pair
这题有坨区间最大值,考虑最值分治.分治时每次取出最大值,然后考虑统计跨过这个位置的区间答案,然后两边递归处理.如果之枚举左端点,因为最大值确定,右端点权值要满足\(a_r\le \frac{\max a_k}{a_l}\),所以可以在主席树上询问区间内在一段值域内的数个数.不过如果左半边点数过多会被卡成暴力,这时枚举较小右半边即可.复杂度类似启发式合并,枚举的总点数为为\(O(nlogn)\),所以总复杂度为两个\(log\)
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10,inf=1<<30;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,a[N],b[N],sq[N][2],bk[N];
LL ans;
#define mid ((l+r)>>1)
int s[N*30],ch[N*30][2],rt[N],tt;
void inst(int o1,int o2,int x)
{
int l=1,r=m;
s[o1]=s[o2]+1;
while(l<r)
{
if(x<=mid)
{
ch[o1][0]=++tt,ch[o1][1]=ch[o2][1];
o1=ch[o1][0],o2=ch[o2][0];
r=mid;
}
else
{
ch[o1][0]=ch[o2][0],ch[o1][1]=++tt;
o1=ch[o1][1],o2=ch[o2][1];
l=mid+1;
}
s[o1]=s[o2]+1;
}
}
int quer(int o1,int o2,int l,int r,int ll,int rr)
{
if(ll>rr||!s[o1]) return 0;
if(ll<=l&&r<=rr) return s[o1]-s[o2];
int an=0;
if(ll<=mid) an+=quer(ch[o1][0],ch[o2][0],l,mid,ll,rr);
if(rr>mid) an+=quer(ch[o1][1],ch[o2][1],mid+1,r,ll,rr);
return an;
}
int ma[N<<2];
bool zz=1;
int maxx(int aa,int bb){return a[aa]>=a[bb]?aa:bb;}
void p2(int o){ma[o]=maxx(ma[o<<1],ma[o<<1|1]);}
void bui(int o,int l,int r)
{
if(l==r){ma[o]=l;return;}
bui(o<<1,l,mid),bui(o<<1|1,mid+1,r);
p2(o);
}
int q2(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return ma[o];
int aa=0,bb=0;
if(ll<=mid) aa=q2(o<<1,l,mid,ll,rr);
if(rr>mid) bb=q2(o<<1|1,mid+1,r,ll,rr);
return maxx(aa,bb);
}
void sv(int l,int r)
{
if(l>r) return;
if(l==r){ans+=b[a[l]]==1;return;}
int md=q2(1,1,n,l,r);
if(md-l+1<r-md+1)
{
for(int i=md;i>=l;--i)
ans+=quer(rt[r],rt[md-1],1,m,1,upper_bound(b+1,b+m+1,b[a[md]]/b[a[i]])-b-1);
}
else
{
for(int i=md;i<=r;++i)
ans+=quer(rt[md],rt[l-1],1,m,1,upper_bound(b+1,b+m+1,b[a[md]]/b[a[i]])-b-1);
}
sv(l,md-1),sv(md+1,r);
}
int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=b[i]=rd();
sort(b+1,b+n+1),m=unique(b+1,b+n+1)-b-1;
b[++m]=inf;
for(int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=n;++i) inst(rt[i]=++tt,rt[i-1],a[i]);
bui(1,1,n);
sv(1,n);
printf("%lld\n",ans);
return 0;
}
luogu P4755 Beautiful Pair的更多相关文章
- 【题解】P4755 Beautiful Pair(启发式合并的思路+分治=启发式分治)
[题解]P4755 Beautiful Pair upd: 之前一个first second烦了,现在AC了 由于之前是直接抄std写的,所以没有什么心得体会,今天自己写写发现 不知道为啥\(90\) ...
- 洛谷 P4755 - Beautiful Pair(主席树+分治+启发式优化)
题面传送门 wssb,我紫菜 看到这类与最大值统计有关的问题可以很自然地想到分治,考虑对 \([l,r]\) 进行分治,求出对于所有 \(l\le x\le y\le r\) 的点对 \((x,y)\ ...
- Luogu 4755 Beautiful Pair
分治 + 主席树. 设$solve(l, r)$表示当前处理到$[l, r]$区间的情况,我们可以找到$[l, r]$中最大的一个数的位置$mid$,然后扫一半区间计算一下这个区间的答案. 注意,这时 ...
- P4755 Beautiful Pair
题目 洛谷 做法 \(i≤x≤j,a[i]<\frac{a[x]}{a[j]}\) 考虑\(a[x]\)的贡献,单调栈预处理\(L,R\)能作为最大值的区间 枚举一端点,仅需另一端点满足条件即可 ...
- 洛谷$P4755\ Beautiful\ Pair$ 最大值分治
正解:最大值分治 解题报告: 传送门$QwQ$ 昂考虑如果已经钦定了点$x$是这个$max$了,然后现在要求有多少对$[l,r]$满足$a_x=max\left\{a_i\right\},i\in[l ...
- P4755 Beautiful Pair (分治 + 主席树)
题意:1e5的数组 计算有多少对 ai * aj <= max(ai ai+1...aj-1 aj) 题解:在处理这种涉及到区间极值的题时 好像是个套路分治 从级值中间分成两个区间 从区间短的那 ...
- 「LGR-049」洛谷7月月赛 D.Beautiful Pair
「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...
- [luogu4755]Beautiful Pair
[luogu4755]Beautiful Pair luogu 第一次写最大值分治感觉有点丑 每次找到最大值mid,扫小的一边,主席树查大的一边小于等于\(\frac{a[mid]}{a[i]}\)的 ...
- luoguP4755 Beautiful Pair
https://www.luogu.org/problemnew/show/P4755 考虑分治,在 [l, r] 区间中用线段树找到最大的一个点,处理经过它的可行数对的个数,统计个数可以离线树状数组 ...
随机推荐
- Samba windows 10 share: mount error(112): Host is down
Windows 10 Share File: //10.108.xx.xx/lnxvda-rf/ROBOT [root@rhels73 robot]# mount -t cifs -o usernam ...
- python中列表的简单用法
1.定义list >>> li = ["a", "b", "mpilgrim", "z", " ...
- ccf 201703-4 地铁修建(95)(并查集)
ccf 201703-4 地铁修建(95) 使用并查集,将路径按照耗时升序排列,依次加入路径,直到1和n连通,这时加入的最后一条路径,就是所需要修建的时间最长的路径. #include<iost ...
- spring boot配置redis
- 使用data_flow_ops构造batch数据集
1. tf.unstack(number, axis=0) 表示对数据进行拆分 import tensorflow as tf import numpy as np data = np.array( ...
- 最少步数&P1443 马的遍历
1330:[例8.3]最少步数 s数组:记录(1,1)到达每一点需要的最少步数 s[1][1]自然为 0,其余初始化为 -1 que数组:que[#][1] 表示(1,1)可到达点的 x 坐标 q ...
- Orcal nvl函数
NVL(E1, E2)的功能为:如果E1为NULL,则函数返回E2,否则返回E1本身.但此函数有一定局限,所以就有了NVL2函数. 拓展:NVL2函数:Oracle/PLSQL中的一个函数,Oracl ...
- OpenStack Blazar 架构解析与功能实践
目录 文章目录 目录 Blazar Blazar 的安装部署 Blazar 的软件架构 Blazar 的资源模型与状态机 Blazar 的主机资源预留功能(Host Reservation) 代码实现 ...
- CentOS 6 系统基础配置
系统版本:CentOS 6.8 Minimal 采用最小化系统安装,许多组件默认是不安装的,通过手工安装一些常用工具包,让系统用起来更顺手. 1.设置机器名: # echo "NETWORK ...
- JavaScript基础入门09
目录 JavaScript 基础入门09 Event 自定义右键菜单 获取鼠标按键 获取鼠标坐标 获取键盘按键 页面中位置的获取 浏览器的默认行为 冒泡 什么是冒泡 小练习 JavaScript 基础 ...