洛谷P2279 消防局的设立【树形dp】
题目:https://www.luogu.org/problemnew/show/P2279
题意:一棵树。在节点处建消防站,可以覆盖与他距离在2之内的节点。问最少要建多少个消防站,可以覆盖所有的节点。
思路:有一种贪心的思路,看大部分题解都是这样。
如果要覆盖当前节点(自己不建),那么可能是父亲,兄弟,祖父建了。
但是我们发现,在祖父建覆盖的范围比父亲兄弟要更广一些。所以就贪心的取深度最深的节点,在他的祖父处建一个。
因为想练dp所以没写贪心的。
看结构感觉是树形dp。$dp[i]$表示以$i$为根的子树的情况,想再开一维表示$i$有没有建。后来发现状态好像并不够。
因为只考虑子树的话,当前节点$i$不被覆盖也没关系,他可以被他的父亲或祖先覆盖。
所以大情况分成两种,$i$被覆盖和$i$没被覆盖。
其中$i$被覆盖可以是因为$i$自己建了,也可以是因为有一个儿子建了或者是有一个孙子建了。所以这里有三种状态。
$i$没被覆盖还可以分成只有$i$没被覆盖和$i$和儿子都没有被覆盖。这里又是两种状态。
所以总共是5中状态:
$dp[i][0],在i处建$
$dp[i][1], i处不建但i至少有一个儿子建了$
$dp[i][2],i和儿子都不建但至少有一个孙子建了$
$dp[i][3],自己还没被覆盖,儿子已经被覆盖$
$dp[i][4], 自己和儿子都还没被覆盖$
转移方程:
$dp[i][0] = 1 + \sum min(dp[son][0...4])$每一个儿子的任何一种状态都可以。所以每个儿子都取5种状态的最小的。
$dp[i][1] = min(dp[son1][0] + \sum_(son != son1) min(dp[son][0...3]))$,这里一个巧妙的处理方法是先将每一个儿子的$min(dp[son][0...3])$加上,在找到最小的$dp[son][0]-min(dp[son][0...3])$最后加上。
$dp[i][2] = min(dp[son1][1] + \sum_(son!=son1)(min(dp[son][0...2]))$,此时如果son不在子树被覆盖的话,别的节点也reach不到了。处理方法和上面也一样。
$dp[i][3] = \sum min(dp[son][0...2])$
$dp[i][4] = \sum min(dp[son][0...3]$
#include<cstdio>
#include<cstdlib>
#include<map>
#include<set>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<iostream> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
typedef pair<int, int> pr; int n;
const int maxn = ;
int fa[maxn];
vector<int>son[maxn];
int dp[maxn][]; void dfs(int rt)
{
if(son[rt].size() == ){
dp[rt][] = ;
dp[rt][] = dp[rt][] = inf;
dp[rt][] = dp[rt][] = ;
return;
}
dp[rt][] = ;
int maxson = inf, maxgs = inf;
for(int i = ; i < son[rt].size(); i++){
dfs(son[rt][i]);
int tmp1 = inf, tmp2 = inf, tmp3 = inf;
for(int j = ; j < ; j++){
tmp1 = min(tmp1, dp[son[rt][i]][j]);
if(j < )tmp2 = min(tmp2, dp[son[rt][i]][j]);
if(j < )tmp3 = min(tmp3, dp[son[rt][i]][j]);
}
dp[rt][] += tmp1;
dp[rt][] += tmp2;
maxson = min(maxson, dp[son[rt][i]][] - tmp2);
maxgs = min(maxgs, dp[son[rt][i]][] - tmp3);
dp[rt][] += tmp3;
dp[rt][] += tmp3;
dp[rt][] += tmp2;
}
dp[rt][] += maxson;
dp[rt][] += maxgs; } int main()
{
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d", &fa[i]);
son[fa[i]].push_back(i);
}
dfs();
printf("%d\n", min(dp[][], min(dp[][], dp[][]))); }
洛谷P2279 消防局的设立【树形dp】的更多相关文章
- 洛谷P2279消防局的设立
传送门啦 一个很摸不清头脑的树形dp 状态: $ dp[i][0] $ :选自己 $ dp[i][1] $ :选了至少一个儿子 $ dp[i][2] $ :选了至少一个孙子 ------------- ...
- 洛谷P2279 消防局的设立 [HNOI2003] 贪心
正解:贪心 解题报告: 传送门! 这题贪心得挺显然的,,,?居然能有蓝,,,是蓝题太水了嘛,,,? 简单说下,这题一看到就能想到,对最低的没被覆盖到的点给它的祖父建一个消防局 没了? 哦这题实现还挺有 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- P2279 [HNOI2003]消防局的设立[树形dp]
题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状 ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp
正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...
- 洛谷 P4201 设计路线 [NOI2008] 树形dp
正解:树形dp 解题报告: 大概是第一道NOI的题目?有点激动嘻嘻 然后先放个传送门 先大概港下这题的题意是啥qwq 大概就是给一棵树,然后可以选若干条链把链上的所有边的边权变成0,但是这些链不能有交 ...
- 【BZOJ1217】[HNOI2003]消防局的设立 树形DP
[BZOJ1217][HNOI2003]消防局的设立 Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地, ...
- 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)
题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...
随机推荐
- 【CodeForces】868F. Yet Another Minimization Problem
原题链接 题目大意是有N个数,分成K段,每一段的花费是这个数里相同的数的数对个数,要求花费最小 如果只是区间里相同数对个数的话,莫队就够了 而这里是!边单调性优化边莫队(只是类似莫队)!而移动的次数和 ...
- PAT甲级 二叉树 相关题_C++题解
二叉树 PAT (Advanced Level) Practice 二叉树 相关题 目录 <算法笔记> 重点摘要 1020 Tree Traversals (25) 1086 Tree T ...
- codeforce 839d.winter is here
题意:如果一个子序列的GCD为1,那么这个子序列的价值为0,否则子序列价值为子序列长度*子序列GCD 给出n个数,求这n个数所有子序列的价值和 题解:首先得想到去处理量比较少的数据的贡献,这里处理每个 ...
- (十)web服务与javaweb结合(1)
一.解决方法 A . 编写一个监听器,在监听器中发布服务 二.案例一 方法A:编写一个监听器,在监听器中发布服务 1. 编写服务接口 package com.shyroke.service; impo ...
- Java HeapSort
Java HeapSort /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternational & ...
- JS OOP -04 JS中的公有成员,私有成员和静态成员
JS中的公有成员,私有成员和静态成员 a.实现类的公有成员 b.实现类的私有成员 c.实现类的静态成员 a.实现类的公有成员 之前定义的任何类型成员都属于公有成员的范畴,该类的任何实例都对外公开这些属 ...
- CentOS 系统 MySQL 5.7 开启远程连接
CentOS 系统安装好 MySQL 后,默认情况下不支持用户通过非本机连接上数据库服务器,下面是解决方法: 1.在控制台执行 mysql -u root -p 系统提示输入数据库 root 用户的密 ...
- c#基础知识梳理(二)
上期回顾 - https://www.cnblogs.com/liu-jinxin/p/10818256.html 一.变量 一个变量只不过是一个供程序操作的存储区的名字.在 C# 中,每个变量都有一 ...
- c++opencv中线条细化算法
要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...
- Linux学习笔记:cut命令
基础 功能:文件内容查看,显示行中指定部分,删除文件中指定字段.cut 命令用于显示每行从开头算起 a - b 的文字. 语法: cut [-bn] [file.txt] cut [-c] [file ...