题目链接:http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf

题意:给定一棵有 n 个结点的树和一个数 m,对于 i ∈ [1,m] 问是否存在一个子图结点的权值和为 i 。

题解:一个显然的思路是树上做背包,但显然会 T。要遍历全部子图,考虑进行点分治,然后合并的时候用 bitset 优化背包,时间复杂度O(nmlogn / 64),且时限给了 8s。

 #include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define mp(a,b) make_pair(a,b)
#define pi acos(-1)
#define pii pair<int,int>
#define pb push_back
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int maxn = 3e3 + ;
const int maxm = 1e5 + ;
const ll mod = ; int n,m;
vector<int>vec[maxn];
bool used[maxn];
int a[maxn],root,sz[maxn],son[maxn],all; void getroot(int u,int fa) {
sz[u] = , son[u] = ;
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v] || v == fa) continue;
getroot(v,u);
sz[u] += sz[v];
son[u] = max(son[u],sz[v]);
}
son[u] = max(son[u],all - son[u]);
if(son[u] < son[root]) root = u;
} bitset<maxm>bit[maxn],ans; void calc(int u,int fa) {
sz[u] = , bit[u] <<= a[u];
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v] || v == fa) continue;
bit[v] = bit[u];
calc(v,u);
sz[u] += sz[v];
bit[u] |= bit[v];
}
} void solve(int u) {
used[u] = true;
bit[u].reset(), bit[u].set();
calc(u,);
ans |= bit[u];
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v]) continue;
root = ;
all = sz[v];
getroot(v,);
solve(root);
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
int t;
scanf("%d",&t);
while(t--) {
ans.reset();
scanf("%d%d",&n,&m);
for(int i = ; i <= n; i++) vec[i].clear(),used[i] = false;
for(int i = ; i < n; i++) {
int u,v;
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i = ; i <= n; i++) scanf("%d",&a[i]);
root = ;
son[] = 1e9;
all = n;
getroot(,);
solve(root);
for(int i = ; i <= m; i++) printf("%d",(int)ans[i]);
printf("\n");
}
return ;
}

CCPC 2016 杭州 E. Master of Subgraph(点分治+bitset优化DP)的更多相关文章

  1. HDU - 6268: Master of Subgraph (分治+bitset优化背包)

    题意:T组样例,给次给出一个N节点的点权树,以及M,问连通块的点权和sum的情况,输出sum=1到M,用0或者1表示. 思路:背包,N^2,由于是无向的连通块,所以可以用分治优化到NlgN. 然后背包 ...

  2. hdu 6268 Master of Subgraph(点分治+bitset)

    You are given a tree with n nodes. The weight of the i-th node is wi. Given a positive integer m, no ...

  3. [HDU6268]Master of Subgraph

    [HDU6268]Master of Subgraph 题目大意: 一棵\(n(n\le3000)\)个结点的树,每个结点的权值为\(w_i\).给定\(m(m\le10^5)\),对于任意\(i\i ...

  4. 算法学习分析-点分治 HDU 6269 Master of Subgraph

    首先给出定义 点分治是一种处理树上路径的工具 挂出一道题目来:Master of Subgraph 这道题目让你求所有联通子图加和所能产生数字,问你1到m之间,那些数字可以被产生 这道题目,假如我们利 ...

  5. Master of Subgraph

    Problem E. Master of SubgraphYou are given a tree with n nodes. The weight of the i-th node is wi. G ...

  6. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  7. HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)

    题目链接  2017 CCPC Hangzhou  Problem E 题意  给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...

  8. HDU5934 Bomb(2016杭州CCPC第二题)(强连通缩点)

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  9. ccpc 2016 省赛

    1.configuration if ide. 2.file import and export. 3.check your program more than once. ============= ...

随机推荐

  1. 快速了解NIO

    NIO的由来 我们都知道,在jdk1.4的时候就开始引入NIO了,它是基于Selector机制的非阻塞I/O,可以将多个异步的I/O操作集中到一个或几个线程中进行处理,目的就是为了代替阻塞I/O,提到 ...

  2. Python--yaml文件操作

    一.yaml文件的使用注意事项 加载yaml文件函数: data = yaml.load(f)  (我在实际测试中用的是yaml.safe_load(f)可以正常,用yaml.load(f)会报错因为 ...

  3. MarkdownPad2安装与破解-转载

    MarkdownPad安装包下载链接链接:https://pan.baidu.com/s/1o7c4W7C2d8zCPh5z7y4IvQ提取码:e4bf 下载解压之后,找要MarkdownPad2.e ...

  4. php 配置微信公众号

    首先你要在微信公众号官网申请一个公众号,然后登录进去 在网页的左下方找到开发的基本配置 就可以开始配置服务器下面的东西了 点击打开成这个样子的 就是一些参数,url填写你自己服务器的具体地址就好了,我 ...

  5. (十)shiro之自定义Realm以及自定义Realm在web的应用demo

    数据库设计 pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http:/ ...

  6. HTTP抓包

    1 概述 wireshark:全平台抓包工具,需要图形化界面,十分强大: httpry:http抓包插件,功能一般,操作简单: tcpdump:强大的抓包插件,支持多种网络协议. 2 httpry ( ...

  7. .NetCore如何使用ImageSharp进行图片的生成

    ImageSharp是对NetCore平台扩展的一个图像处理方案,以往网上的案例多以生成文字及画出简单图形.验证码等方式进行探讨和实践. 今天我分享一下所在公司项目的实际应用案例,导出微信二维码图片, ...

  8. Sublime Text 开发神器相关 插件安装 功能介绍

    无法安装更多见http://blog.csdn.net/freshlover/article/details/44261229/ Sublime Text 3 安装插件管理 Package Contr ...

  9. python实现tcp代理

    1.代理流程图 2.实现代码 #! usr/bin/python2 import sys import socket import thread #handle local buffer def re ...

  10. pytorch入门1——简单的网络搭建

    代码如下: %matplotlib inline import torch import torch.nn as nn import torch.nn.functional as F from tor ...