.

样例输入复制

4 4

样例输出复制

14
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll MOD=1e9+7,inv2=500000004,inv6=166666668;
ll n,m;
const int maxn=100000;
ll A(ll x) {
x %= MOD;
return ((x * x) + x) % MOD;
} ll mul(ll a, ll b) {
a %= MOD, b %= MOD;
return (a *b) % MOD;
} ll kA(ll t,ll k) {
ll res= (t+k*t)%MOD;
res = (res*k)%MOD;
res = (res*inv2)%MOD;
ll h = (mul(mul(k,k+1),2*k+1)*inv6)%MOD;
h = (h*t)%MOD;
h = (h*t)%MOD;
res = (res+h)%MOD;
return res;
} ll a[maxn];
ll b[maxn]; void factor(ll n,ll &tot) {
ll temp,i,now;
temp=(ll)((double)sqrt(n)+1);
tot=0;
now=n;
for(i=2; i<=temp; ++i)if(now%i==0) {
a[++tot]=i;
b[tot]=0;
while(now%i==0) {
++b[tot];
now/=i;
}
}
if(now!=1) {
a[++tot]=now;
b[tot]=1;
}
} int main() {
while(scanf("%d%d",&n,&m)!=EOF) {
ll all;
factor(m,all);
ll g=0;
for(int i=1; i<(1<<all); i++) {
int cnt=0,t=1;
for(int j=0; j<all; j++) {
if((i>>j)&1) {
t*=a[j+1];
cnt++;
}
}
if(cnt&1) {
if(n/t==0||t>n) continue;
g = (g+kA(t,n/t))%MOD;
} else {
if(n/t==0||t>n) continue;
g = (g-kA(t,n/t)+MOD)%MOD;
}
}
ll ans=g;
ll other = (mul(n, n + 1)*inv2 + mul(mul(n,n+1),2*n+1)*inv6)%MOD;
ans = (other - ans + MOD)% MOD;
cout<<ans<<endl;
}
return 0;
}

ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire (素因子分解+容斥)的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire(容斥)

    https://nanti.jisuanke.com/t/31448 题意 已知a序列,给你一个n和m求小于n与m互质的数作为a序列的下标的和 分析 打表发现ai=i*(i+1). 易得前n项和为 S ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire

    这题很好啊,好在我没做出来...大概分析了一下,题目大概意思就是求 问所有满足1<=i<=n且i与m互素的ai之和 最开始我们队的做法是类似线性筛的方法去筛所有数,把数筛出来后剩下数即可, ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire (容斥原理)

    可推出$a_n = n^2+n, $ 设\(S_n = \sum_{i=1}^{n} a_i\) 则 \(S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 G 容斥原理

    https://nanti.jisuanke.com/t/31448 解析 易得an=n*n+n O(1)得到前n项和  再删除与m不互素的数  我们用欧拉函数求出m的质因数  枚举其集合的子集 进行 ...

  5. 【ACM-ICPC 2018 沈阳赛区网络预赛 G】Spare Tire

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 让你求出1..n中和m互质的位置i. 让你输出∑ai 这个ai可以oeis一波. 发现是ai = i(i+1) 1..n中和m互质的 ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  8. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

随机推荐

  1. Python编程之注释

    一.注释 当你把变量理解透了,你就已经进入了编程的世界.随着学习的深入,用不了多久,你就可以写复杂的上千甚至上万行的代码啦,有些代码你花了很久写出来,过了些天再回去看,发现竟然看不懂了,这太正常了. ...

  2. 界面(UI)测试基础

    界面测试,在web程序雏形后就持续测试到项目交付. 项目中的界面测试 此刻需要感慨下“产品经理”的重要性:没有产品把关整个项目,做出来的东西只能叫做“程序”而非“产品” 有产品的工作流,测试在界面测试 ...

  3. Codeforces 1244E. Minimizing Difference

    传送门 首先减的顺序是无关紧要的,那么有一个显然的贪心 每次减都减最大或者最小的,因为如果不这样操作,最大的差值不会变小 那么直接把序列排序一下然后模拟一下操作过程即可,别一次只减 $1$ 就好 #i ...

  4. IIS Express启动不了的的解决方案

    netsh http show iplisten netsh http delete iplisten ipaddress=11.22.33.44 (where 11.22.33.44 is the ...

  5. Python 风格指南

    https://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/contents/ 目前个人遵循的基本规范 ...

  6. vs 2013 设置website项目端口

    vs 2015/2013 设置website项目端口 在web项目创建之后,当我想重新debug时,出现the port xxx is in use 错误. 经过netstat分析,发现占用此项目端口 ...

  7. centos 配置rsync+inotify数据实时同步

    何为rsync? 定义: rsync是一个开源的快速备份工具,可以在不同主机之间镜像同步整个目录树,支持增量备份,保持链接和权限,非常适用于异地备份 何为源端和发起端? 在远程同步过程中,负责发起rs ...

  8. 仍然有人在叫喊C语言已经过时了

    现在,仍然有人在叫喊C语言已经过时了.还有什么值得学习的?看看现在使用Python.PHP和其他语言有多简单.谁去学旧的C语言?是真的吗?作者下载了这两种语言的底层源代码.由于空间的限制,它没有分析框 ...

  9. openlayers 地图移动缩放动画

    map.getView().animate({ // 只设置需要的属性即可 center: [data.jd, data.wd], // 中心点 zoom: 11, // 级别 rotation: u ...

  10. 关于同一台服务器上两个PHP项目相互访问超时的问题

    当一台服务器部署多个PHP项目,各自运行时并无干扰, 即使都使用 9000端口来跑php 但是有一种情况,当其中一个项目需要调用另一个php项目的接口时,便会超时,这是因为php是单线程的同步的 也许 ...