poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 7954 | Accepted: 3305 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power
and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-apseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes
for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p anda.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes
<span style="font-size:32px;">#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
long long a,p;
long long power(long long a,long long p)
{
long long ret=1,temp=p;
while(temp)
{
if(temp&1)
ret=(ret*a)%p;
a=(a*a)%p;
temp>>=1;
}
return ret%p;
}
bool prime(long long m)
{
for(long long i=2;i*i<=m;i++)
if(m%i==0)
return false;
return true;
}
int main()
{
long long a,p;
while(~scanf("%lld %lld",&p,&a))
{
if(a==0&&p==0) return 0;
if(power(a,p)==a%p&&!prime(p))
printf("yes\n");
else
printf("no\n");
}
return 0;
}
</span>
poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题的更多相关文章
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
- POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...
- poj 3641 Pseudoprime numbers
题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...
- poj 3641 Pseudoprime numbers(快速幂)
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
- POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)
模板题,直接用 /********************* Template ************************/ #include <set> #include < ...
- poj 3641 Pseudoprime numbers Miller_Rabin测素裸题
题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- HDU 3641 Pseudoprime numbers(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11336 Accepted: 4 ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
随机推荐
- 初识WSGI接口
WSGI WSGI全称为Web Server Gateway Interface,WSGI允许web框架和web服务器分开,可以混合匹配web服务器和web框架,选择一个适合的配对.比如,可以在Gun ...
- HashSet——add remove contains方法底层代码分析(hashCode equals 方法的重写)
引言:我们都知道HashSet这个类有add remove contains方法,但是我们要深刻理解到底是怎么判断它是否重复加入了,什么时候才移除,什么时候才算是包括????????? add ...
- Js 更换html同一父元素下子元素的位置
//更换两个元素的位置 var exchange=function (el1, el2) { var ep1 = el1[0].parentNode, ep2 = el2[0].parentNode, ...
- Power BI 行级别安全性 (RLS)
在 Power BI Desktop 中定义角色和规则 你可以在 Power BI Desktop 中定义角色和规则. 发布到 Power BI 时,它还会发布角色定义. 若要定义安全角色,请执行以下 ...
- C# 定义热键
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- JS基础_打印出1-100之间所有的质数
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- JavaScript函数尾调用与尾递归
什么是函数尾调用和尾递归 函数尾调用与尾递归的应用 一.什么是函数的尾调用和尾递归 函数尾调用就是指函数的最后一步是调用另一个函数. //函数尾调用示例一 function foo(x){ retur ...
- cpp编码规范要求
1.所有头文件使用#ifndef #define #endif来防止文件被多重包含,命名格式当是: <PROJECT>_<PATH>_<FILE>_H_ 2.只有当 ...
- centos7中的网卡名称相关知识
转载自https://www.cnblogs.com/zyd112/p/8143464.html 一致性网络设备命名(Consistent Network Device Naming) 背景介绍: 在 ...
- window dos 下批量删除docker 容器
>dokcer ps -a -q> 1.txt (写入所有已暂停容器id) >for /f %a in (1.txt) do docker rm %a for 循环 /f ...