ZOJ - 3591 NIM
ZOJ - 3591NIM
题目大意:给你n,s,w和代码,能生成长度为n的序列,问异或和不为0的子序列有多少个?
这是个挂羊头卖狗肉的题,和NIM博弈的关系就是要异或和不为0,一开始以博弈甚至循环节的去想这题,完全跑偏了。其实主要还是一个异或和,我们看一组数2 3 2 3 2 3 2,我们像前缀和一样去处理
数 2 3 2 3 2 3 3
异或和 2 1 3 0 2 1 2
位置 1 2 3 4 5 6 7
我们可以发现位置1到位置5的异或结果是一样的都是2,这能说明什么呢,说明位置1到位置4的异或结果为0,位置4的异或和就是0,这很明显。再来看位置2到位置6的他们异或结果都是1,为什么呢?因为位置2到位置5的异或结果0,中间的异或结果为0,所以从位置2到位置6的异或结果才会相同。我们来看异或和结果一样的位置1,5,7,可以发现它们异或和相等,然后和位置已经没有太大关系,因为异或和相同,说明两个位置中间的异或结果为0。那每两个相同异或和结果的位置就决定了一个为0的子序列。所以我们只需要排个序,然后统计相同异或和的长度len,然后两两组合就是len*(len-1)/2个序列为0,我们只要用总结果n*(n+1)/2减去这个组合的个数就可以得到答案了,还有就是异或和已经等于0的位置就像上面的位置4,他们相当于从位置0(最初)到当前位置的序列,这也要减去。详情见代码。
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N=;
ll n,s,w,a[N],sum[N];
void init()
{
ll g=s;
sum[]=;
for (int i=;i<=n;i++)
{
a[i]=g;
sum[i]=sum[i-]^a[i];//前缀异或和
if(a[i]==)
a[i]=g=w;
if(g%==)
g=g/;
else
g=(g/)^w;
}
sum[n+]=-;//为了把最后的也统计上,加上个终止条件
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld",&n,&s,&w);
init();
sort(sum+,sum++n);//把前缀异或和排个序,使相同的在连续区间
ll ans=n*(n+)/;
for(ll i=,j=;i<=n+;i++)
{
if(sum[i]==)//已经是0了减去
ans--;
if(i>&&sum[i]!=sum[i-])//减去中间相同区间的组合
{
ans-=(i-j)*(i-j-)/;
j=i;
}
}
printf("%lld\n",ans);
}
return ;
}
前前后后
这题给了我一个很好的启发,也是在敲板子套模板多了之后给我提了个思考,要变通,要去思考问题。
ZOJ - 3591 NIM的更多相关文章
- zoj 3591 Nim 博弈论
思路:先生成序列再求异或,最多的可能为n*(n+1)/2: 在去掉其中必败的序列,也就是a[i]=a[j]之间的序列. 代码如下: #include<iostream> #include& ...
- ZOJ 3964 NIM变形
LINK 题意:n堆石子,Alice 和 Bob 轮流取石子,谁不能再取或被对方取完为败.但是对于alice拥有限制:b=0此堆正常无限制:b=1此堆Alice只能取奇数个石子:b=2只能取偶数个石子 ...
- zoj3591 Nim(Nim博弈)
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...
- [博弈]ZOJ3591 Nim
题意: 给了一串数,个数不超过$10^5$,这串数是通过题目给的一段代码来生成的 int g = S; ; i<N; i++) { a[i] = g; ) { a[i] = g = W; } = ...
- Zoj 3529 A Game Between Alice and Bob 数论+博弈Nim 快速求数中有多少个素数因子
本题涉及博弈论中的Nim游戏博弈. Nim游戏博弈详解链接: http://www.cnblogs.com/exponent/articles/2141477.html 本题解题报告详解链接: htt ...
- ZOJ 3964 Yet Another Game of Stones Nim游戏变种
ZOJ3964 解题思路 此题的题意比较容易理解,可以简单的看着 Nim 博弈的变种.但问题在于 Alice 对第 i 堆石子的取法必须根据 bi 确定.所以如果这个问题能够归结到正常的 Nim 博弈 ...
- ZOJ People Counting
第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ 3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...
- [LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
随机推荐
- Excel导入异常Cannot get a text value from a numeric cell解决
POI操作Excel时偶尔会出现Cannot get a text value from a numeric cell的异常错误. 异常原因:Excel数据Cell有不同的类型,当我们试图从一个数字类 ...
- luogu题解 UVA11992 【Fast Matrix Operations】
题目链接: https://www.luogu.org/problemnew/show/UVA11992 题目大意: 一个r*c的矩阵,一开始元素都是0,然后给你m次三种操作,分别是将一个子矩阵中所有 ...
- Java对象的序列化和反序列化介绍
一.什么序列化和反序列化以及作用: java序列化是指把java对象转换为字节序列的过程,而java反序列化是指把字节序列恢复为java对象的过程 1.序列化: 1)对象序列化的最主要的用处就是在传递 ...
- java启动server时报端口无效解决方法
今天在Java里配置Tomcat服务器,启动时出现如下图报错信息 The server cannot be started because one or more of the ports are i ...
- 卡尔曼(Kalman)滤波及十种数据采集滤波的方法和编程实例
卡尔曼(Kalman)滤波:https://blog.csdn.net/CSDN_X_W/article/details/90289021 十种数据采集滤波的方法和编程实例:https://wenku ...
- Python单元测试框架unittest重要属性 与 用例编写思路
前言 本文为转载,原文地址作者列举python unittest这个测试框架的主要属性和 测试用例思路 unittest单元测试框架不仅可以适用于单元测试,还可以适用WEB自动化测试用例的开发与执行, ...
- innodb存储引擎之内存
1.innoDB存储引擎体系架构 如上图所示,innoDB存储是基于磁盘存储的,并且其中的记录以页的方式进行管理,但为什么要引入一个内存池呢? 其目的就是为了协调CUP速度与磁盘速度的鸿沟,基于磁盘的 ...
- 《python解释器源码剖析》第10章--python虚拟机中的一般表达式
10.0 序 上一章中,我们通过PyEval_EvalFrameEx看到了python虚拟机的整体框架,那么这一章我们将深入到PyEval_EvalFrameEx的各个细节当中,深入剖析python的 ...
- MyEclipse基本配置及优化【MyEclipse_10.7】
MyEclipse基本配置 MyEclipse所有的配置都是基于工作空间的,当换了个工作空间,之前的所有配置信息就失效了.(建议每次换工作空间之前就配置好基本信息) 1.修改工作空间编码为UTF-8 ...
- LeetCode3.无重复字符的最大子串
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 示例 1: 输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc&quo ...