提升树的学习优化过程中,损失函数平方损失和指数损失时候,每一步优化相对简单,但对于一般损失函数优化的问题,Freidman提出了Gradient Boosting算法,其利用了损失函数的负梯度在当前模型的值:

  作为回归问题提升树算法的残差近似值,去拟合一个回归树。

函数空间的数值优化

  优化目标是使得损失函数最小,(N是样本集合大小):

  GBDT是一个加法模型: fm(x) 是每一次迭代学习的到树模型

  对于其每一步迭代:

  其中

  其实 L(y,F(x)) 就是损失函数,Φ(F(x)) 是当前x下的损失期望,gm(x) 是当前x下的函数梯度。最终 fm(x) 学习的是损失函数在函数空间上的负梯度。

  对于权重 ρm 通过线性搜索求解:

  理解:每一次迭代可以看做是采用梯度下降法对最优分类器 F*(x) 的逐渐比较,每一次学习的模型 fm(x) 是梯度,进过M步迭代之后,最后加出来的模型就是最优分类器的一个逼近模型,所以 fm(xi) 使用单步修正方向 -gm(xi):

  这里的梯度变量是函数,是在函数空间上求解(这也是后面XGBoost改进的点),注意以往算法梯度下降是在N维的参数空间的负梯度方向,变量是参数。这里的变量是函数,更新函数通过当前函数的负梯度方向来修正模型,使它更优,最后累加的模型近似最优函数。

算法描述

  输入:训练数据集 T={(x1,y1),(x2,y2),···,(xN,yN)}

  输出:回归树 fM(x)

  1. 初始化

  2. 对 m=1,2,…M

    a. 对 i=1,2,…,N ,计算

    b. 对 rmi 拟合一颗回归树,得到第m棵树的叶结点区域 Rmj, j=1,2,…,J ,即一棵由J个叶子节点组成的树

    c. 对  j=1,2,…,J ,计算

    上面两步相当于回归树递归在遍历所有切分变量j和切分点s找到最优j,s,然后在每个节点区域求最优的c

    d. 更新

  3. 得到回归树

  在回归树生成时,建树选择分裂点必须要遍历所有数据在每个特征的每个切分点的值,如果是连续特征就计算复杂度非常大,也是GBDT训练主要耗时所在。

参考

GBDT原理-Gradient Boosting Decision Tree

梯度提升树GBDT总结的更多相关文章

  1. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  2. 梯度提升树(GBDT)原理小结(转载)

    在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...

  3. 机器学习 之梯度提升树GBDT

    目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaB ...

  4. scikit-learn 梯度提升树(GBDT)调参笔记

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  5. 梯度提升树(GBDT)原理小结

    在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting De ...

  6. 笔记︱决策树族——梯度提升树(GBDT)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记来源于CDA DSC,L2-R语言课程所 ...

  7. 梯度提升树GBDT算法

    转自https://zhuanlan.zhihu.com/p/29802325 本文对Boosting家族中一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 简 ...

  8. 机器学习(七)—Adaboost 和 梯度提升树GBDT

    1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类 ...

  9. 机器学习之梯度提升决策树GBDT

    集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...

随机推荐

  1. 捕捉Promise reject 错误

    var sleep = function (time) { return new Promise(function (resolve, reject) { setTimeout(function () ...

  2. WaitType:ASYNC

    项目组有一个数据库备份的Job运行异常,该Job将备份数据存储到remote server上,平时5个小时就能完成的备份操作,现在运行19个小时还没有完成,backup命令的Wait type是 AS ...

  3. List集合复制

    方法一: public static void main(String[] args) { // TODO Auto-generated method stub List<String> ...

  4. zabbix上添加交换机监控记事

    ​ zabbix上添加交换机监控记事 ​ 第一次使用zabbix来添加监控华为s5720交换机,根本找不到头绪,像个无头的苍蝇一样的百度来处理,结果都没有任何效果,给自己增加了很多痛苦和心烦,增加不少 ...

  5. luogu4422 [COCI2017-2018#1] Deda[线段树二分]

    讨论帖:线段树二分的题..我还考场切过..白学 这题我一年前的模拟赛考场还切过,现在就不会了..好菜啊. 显然直接线段树拆成$\log n$个区间,然后每个区间在进行线段树二分即可. UPD:复杂度分 ...

  6. Java8-Stream-No.07

    import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; public class S ...

  7. [ERROR ] The Salt Master has cached the public key for this node, this salt minion will wait for 10 seconds before attempting to re-authenticate

    2.salt master已缓存此节点的公钥,此salt minion将等待10秒,然后再尝试重新验证. [ERROR ] The Salt Master has cached the public ...

  8. [Cypress] Find Unstubbed Cypress Requests with Force 404

    Requests that aren't stubbed will hit our real backend. To ensure we've stubbed all our routes, we c ...

  9. toggle([speed],[easing],[fn]) 用于绑定两个或多个事件处理器函数,以响应被选元素的轮流的 click 事件。

    toggle([speed],[easing],[fn]) 概述 用于绑定两个或多个事件处理器函数,以响应被选元素的轮流的 click 事件. 如果元素是可见的,切换为隐藏的:如果元素是隐藏的,切换为 ...

  10. end()

    end() V1.0概述 回到最近的一个"破坏性"操作之前.即,将匹配的元素列表变为前一次的状态. 如果之前没有破坏性操作,则返回一个空集.所谓的"破坏性"就是 ...