思路:空间上距离相近的点具有相似的特征属性。

执行流程:

  •1. 从训练集合中获取K个离待预测样本距离最近的样本数据;
  •2. 根据获取得到的K个样本数据来预测当前待预测样本的目标属性值

三要素:K值选择/距离度量(欧式距离)/决策选择(平均值/加权平均)

Knn问题:数据量大,计算量较大;解决方案:kd-tree

kd-tree:计算方差,根据方差大的划分

伪代码实现:

import numpy as np
from collections import defaultdict class myknn: def fit(self, X, Y, k):
self.train_x = X
self.train_y = Y
self.k = k def predict(self, X):
predict_labels = []
for x in X:
# 1. 从训练数据中获取K个和当前待预测样本x最相似的样本
neighbors = self.fetch_k_neighbors(x)
# 2. 将这K个最相似的样本中出现次数最多的类别作为预测值
predict_label = self.calc_max_count_label(neighbors)
# 3. 将当前样本的预测值添加到临时的列表中
predict_labels.append(predict_label) return predict_labels def fetch_k_neighbors(self, x):
distances = []
for neighbor in self.train_x:
dis = np.sqrt(np.sum((np.array(x) - neighbor) ** 2))
distances.append(dis)
neighbors_y_distances = [[neighbor, y, dis] for neighbor, y, dis in zip(self.train_x, self.train_y, distances)] k_neighbors_y = sorted(neighbors_y_distances, key=lambda x: x[2])[:self.k]
return k_neighbors_y def calc_max_count_label(self, neighbors):
y_count = defaultdict(int)
for neighbor, y, _ in neighbors:
y_count[y] += 1
max_count_label = sorted(y_count.items(), key=lambda x: x[1], reverse=True)[0][0]
return max_count_label a = myknn()
X = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12],
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]
Y = [1, 2, 3, 2, 1, 2, 3]
k = 3
a.fit(X, Y, k)
print(a.predict([[7, 8, 9], ]))
sklearn 实现:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import os if not os.path.exists('models'):
os.mkdir('models')
base_path = './models/' #模型保存路径 from sklearn.datasets import load_iris #load 鸢尾花数据
from sklearn.model_selection import train_test_split #数据分割
from sklearn.neighbors import KNeighborsClassifier #knn分类器
from sklearn.externals import joblib #持久化 data = pd.read_csv('iris.data', header=None) print(data.head())
X = data.loc[:, :3] #前4列为特征数据
Y = data[4] #最后一列为目标数据
print(X.head()) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=22) '''
def __init__(self,
n_neighbors=5, #邻居数目
weights='uniform', #uniform 等权重/distance
algorithm='auto', #暴力计算和kd-tree
leaf_size=30, #构建kd-tree 允许的最大叶子节点
p=2, #距离公式
metric='minkowski', #默认欧式距离
metric_params=None,
n_jobs=None, #开启多少个线程计算
**kwargs):''' algo = KNeighborsClassifier(n_neighbors=3)
algo.fit(X_train, Y_train)
print('准确率:{}'.format(algo.score(X_train, Y_train))) # 持久化
joblib.dump(value=algo, filename=base_path + 'knn.pkl')

机器学习开发流程:

# 1. 数据加载

# 2. 数据的清洗、处理

# 3. 训练数据和测试数据的划分

# 4. 特征工程

# 5. 模型对象构建

# 6. 模型训练

# 7. 模型效果评估

# 8. 模型持久化

持久化的方式主要三种:
-1. 将模型持久化为二进制的磁盘文件。
-2. 将模型参数持久化到数据库中。
-3. 使用模型对所有数据进行预测,并将预测结果保存到数据库中。

机器学习系列算法1:KNN的更多相关文章

  1. 机器学习经典算法之KNN

    一.前言 KNN 的英文叫 K-Nearest Neighbor,应该算是数据挖掘算法中最简单的一种. 先用一个例子体会下. /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://w ...

  2. Python3实现机器学习经典算法(一)KNN

    一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常 ...

  3. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  4. 就是要你明白机器学习系列--决策树算法之悲观剪枝算法(PEP)

    前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确 ...

  5. 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法

    机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...

  6. 机器学习十大算法 之 kNN(一)

    机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...

  7. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  9. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

随机推荐

  1. 深入分析CAS

    CAS,Compare And Swap,即比较并交换.Doug lea大神在同步组件中大量使用CAS技术鬼斧神工地实现了Java多线程的并发操作.整个AQS同步组件.Atomic原子类操作等等都是以 ...

  2. jQuery 事件介绍

    什么是事件?页面对不同访问者的响应叫做事件.事件处理程序指的是当 HTML 中发生某些事件时所调用的方法. 常用的时间主要有以下几种: click()事件:click() 方法是当按钮点击事件被触发时 ...

  3. cd .ssh返回-bash: cd: .ssh:No such file or directory怎么办

    继续上一篇博文 今天再次陷入同样的问题 避免这个问题的另一个套路是用节点和其他节点直接ssh 远程连接,需要输入密码, 但是输入再次退出之后就OK了 cd 可以到.ssh了  然后就可以开心的免密了

  4. word中快捷键查看与设定

    很多时候,我们在编辑word文档的时候,为了快速方便都使用快捷键,常用的快捷键大家都知道,但是不常用的是不是就比较懵圈,本文就来告诉你怎么查看与设置word的快捷键. 我使用的word2016 第一步 ...

  5. c# 引用参数-ref

  6. 解析CentOS 7中系统文件与目录管理

    Linux目录结构 Linux目录结构是树形的目录结构 根目录 所有分区.目录.文件等的位置起点 整个树形目录结构中,使用独立的一个"/"表示 常见的子目录 目录 目录名称 目录 ...

  7. Python_字符串相关操作

    1.字符串切片操作: str1='hello word' startIndex=0 #开始索引位置 endIndex=5 #结束索引位置+1 step=2 #步长 print(str1[startIn ...

  8. Linux系统硬链接和软链接说明 - 运维笔记

    在linux系统中有种文件是链接文件,可以用来解决文件的共享使用.链接的方式可以分为两种,一种是硬链接(Hard Link),另一种是软链接或者也称为符号链接(Symbolic Link).先来查看下 ...

  9. JDBC课程5--利用反射及JDBC元数据(ResultSetMetaData)编写通用的查询方法

    /**-利用反射及JDBC元数据编写通用的查询方法 * 1.先利用SQl语句进行查询,得到结果集--> * 2.查找到结果集的别名:id--> * 3.利用反射创建实体类的对象,创建aut ...

  10. 17 webpack中babel的配置

    在webpack中,默认只能处理一部分ES6的新语法,一些更高级的ES6语法或者ES7语法, webpack是处理不了的:这时候,就需要借助于第三方的loader,来帮助webpack处理这些高级的语 ...