【参考博客】:

https://blog.csdn.net/meopass/article/details/82952087

Farey Sums

题目描述

Given a positive integer, N, the sequence of all fractions a/b with (0 < a ≤ b), (1 < b ≤ N) and a and b relatively prime, listed in increasing order, is called the Farey Sequence of order N.
For example, the Farey Sequence of order 6 is:

0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1

If the denominators of the Farey Sequence of order N are:

b[1], b[2], . . . , b[K]

then the Farey Sum of order N is the sum of b[i]/b[i + 1] from i = 1 to K—1.
For example, the Farey Sum of order 6 is:

1/6 + 6/5 + 5/4 + 4/3 + 3/5 + 5/2 + 2/5 + 5/3 + 3/4 + 4/5 + 5/6 + 6/1 = 35/2

Write a program to compute the Farey Sum of order N (input).

输入

The first line of input contains a single integer P, (1 ≤ P ≤ 10000), which is the number of data sets that follow. Each data set should be processed identically and independently.
Each data set consists of a single line of input. It contains the data set number, K, followed by the order N, (2 ≤ N ≤ 10000), of the Farey Sum that is to be computed.

输出

For each data set there is a single line of output. The single output line consists of the data set number,K, followed by a single space followed by the Farey Sum as a decimal fraction in lowest terms. If the denominator is 1, print only the numerator.

样例输入

4
1 6
2 15
3 57
4 9999

样例输出

1 35/2
2 215/2
3 2999/2
4 91180457/2

参考博客:

别人博客的推导公式:

我倒是觉得,这个题目就是找规律。因为看到答案都是分母为2,很容易想到其实这个题目就是找规律有关的。

联系互素就想到欧拉函数。写出前几个出来发现就是  ( 3phi(x) -  1 ) / 2


 #pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC optimize("O3")
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define linf 0x3f3f3f3f3f3f3f3fll
#define pi acos(-1.0)
#define nl "\n"
#define pii pair<ll,ll>
#define ms(a,b) memset(a,b,sizeof(a))
#define FAST_IO ios::sync_with_stdio(NULL);cin.tie(NULL);cout.tie(NULL)
using namespace std;
typedef long long ll;
const int mod = ;
ll qpow(ll x, ll y){ll s=;while(y){if(y&)s=s*x%mod;x=x*x%mod;y>>=;}return s;}
//ll qpow(ll a, ll b){ll s=1;while(b>0){if(b%2==1)s=s*a;a=a*a;b=b>>1;}return s;}
inline int read(){int x=,f=;char ch=getchar();while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();return x*f;} const int N = 1e4+; ll pki[N]; void get_pki()
{
for(int i=;i<N;i++) pki[i] = i;
for(int i=;i<N;i++){
if(pki[i]==i)for(int j=i;j<N;j+=i)
pki[j]=pki[j]/i*(i-);
pki[i] += pki[i-];
}
} int main()
{
get_pki();
int _, cas, n;
for(scanf("%d",&_);_--;)
{
scanf("%d",&cas);
scanf("%d",&n);
printf("%d %lld/2\n",cas,*pki[n]-); } }

【规律】Farey Sums的更多相关文章

  1. 【poj 2478】Farey Sequence(数论--欧拉函数 找规律求前缀和)

    题意:定义 Fn 序列表示一串 <1 的分数,分数为最简分数,且分母 ≤n .问该序列的个数.(2≤N≤10^6) 解法:先暴力找规律(代码见屏蔽处),发现 Fn 序列的个数就是 Φ(1)~Φ( ...

  2. URAL 2065 Different Sums (找规律)

    题意:构造一个数列,使得它们的区间和的种类最少,其中数列中不同的数的数目不少于k. 析:我们考虑0这个特殊的数字,然后0越多,那么总和种类最少,再就是正负交替,那么增加0的数量. 代码如下: #pra ...

  3. 【找规律】URAL - 2065 - Different Sums

    就让0出现得尽可能多嘛……大概感受一下就是这样…… 0 0 ... 0 0 0 0 4 -4 3 -3 2 -2 1 -1 #include<cstdio> using namespace ...

  4. 51nod1161 Partial Sums

    开始想的是O(n2logk)的算法但是显然会tle.看了解题报告然后就打表找起规律来.嘛是组合数嘛.时间复杂度是O(nlogn+n2)的 #include<cstdio> #include ...

  5. Backward Digit Sums(暴力)

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5664   Accepted: 32 ...

  6. 1712: [Usaco2007 China]Summing Sums 加密

    1712: [Usaco2007 China]Summing Sums 加密 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 338  Solved: 12 ...

  7. Codeforces 1091D New Year and the Permutation Concatenation 找规律,数学 B

    Codeforces 1091D New Year and the Permutation Concatenation https://codeforces.com/contest/1091/prob ...

  8. 【计数】cf223C. Partial Sums

    考试时候遇到这种题只会找规律 You've got an array a, consisting of n integers. The array elements are indexed from ...

  9. Farey sequences

    n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...

随机推荐

  1. 4)抽象方法不能为private,final或者static,为什么?

    抽象方法的最实质的意 义在于被未来的子类覆盖实现掉.它自己是个空方法.private的实质意义在于本类其他方法调用它.你自己是个空方法,别人调用你有什么用?所以 abstract和private在一起 ...

  2. 线程wait和notify方法的demo详解

    wait和notify都是针对某个线程而言的: package com.roocon.thread.t1; public class NewThread implements Runnable { @ ...

  3. IOS开发环境

    当我们需要帮一些人学习IOS的时候,可以翻阅下这篇文章,我有个同学对IOS开发不太了解,用语言描述该怎么做的时候显得不够具体,或者全部需要我帮忙操作,又会占用我们的时间,如果每个人都这么要求的话,那么 ...

  4. Cookie 概述

    一.属性介绍 Name Cookie的key Value Cookie的value Domain 可以访问此Cookie的域名 Path 可以访问此Cookie的页面路径 Expires/Max-Ag ...

  5. Java 中的JSON 字符串

    类库选择 Java中并没有内置JSON的解析,因此使用JSON需要借助第三方类库. 下面是几个常用的 JSON 解析类库: Gson: 谷歌开发的 JSON 库,功能十分全面. FastJson: 阿 ...

  6. ios 新建app iphone 、 ipad or universal ?

    很久没有关注这个新建app的  时候 选什么的问题了, 因为我们一般在公司 都是 已经建立好的app 直接 在那上面开发. 所以很久不建立新app 遇到新的app需要你自己去创建的时候 可能就会 有突 ...

  7. Web前端接入人机识别验证码---腾讯防水墙

    Web前端接入 1. 准备AppID 验证码接入需要先在管理后台中注册获取APPID和APPSECRET,注册步骤请参考 快速开始 2. 快速接入步骤 1.在Head的标签内最后加入以下代码引入验证J ...

  8. OGG-01332 ogg高版本向低版本传输

    Neo君遇到的ogg版本问题,在ggserr.log中的错误信息如下: 2018-10-12 09:55:10 ERROR OGG-01332 Oracle GoldenGate Delivery, ...

  9. Bitmap之getDensity和setDensity函数

    package com.loaderman.customviewdemo; import android.app.Activity; import android.graphics.Bitmap; i ...

  10. String,StringBuilder 和StringBuffer区别

    1. String 和字符串缓冲区的区别是: String 是一个不可变的字符序列 , 而字符串缓冲区是可变的 2. StringBuffer 是一个线程安全的可变字符序列 ; 线程安全对应的效率低 ...