HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3
每次NTT都忘记初始化,真的是写一个小时,Debug两个小时- -
/*
HDU 6061 - RXD and functions [ NTT ] | 2017 Multi-University Training Contest 3
题意:
给定多项式 F(x) = ∑[0<=i<=n] f(i)*x^i
求多项式 G(x) = F(x-a)
n <= 1e5
分析:
设 G(x) = ∑ g(i)*x^i
将 F(x-a) 按二项式定理展开后易得:
g(x) = ∑[x<=y<=n] Comb(y,x) * f(y) * (-a)^(y-x)
打开组合数,移项:
g(x)*x! = ∑[x<=y<=n] f(y)*y! * (-a)^(y-x) / (y-x)!
设 g'(x) = g(x)*x!
p(x) = f(y)*y!
q(x) = (-a)^x/x!
则 g'(x) = ∑[x<=y<=n] p(y) * q(y-x)
= ∑[1<=y<=n-x] p(y+x) * q(y)
设 g''(x) = g'(n-x)
则 g''(x) = ∑[1<=y<=x] p(n-(x-y)) * q(y)
设 p'(x) = p(n-x)
则 g''(x) = ∑[1<=y<=x] p'(x-y) * q(y)
算出这个卷积后回带即可
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e5+5;
const LL MOD = 998244353;
namespace NTT {
const int G = 3;
const int NUM = 20;
LL wn[20];
LL mul(LL x, LL y) {
return x*y% MOD;
}
LL PowMod(LL a, LL b) {
LL res = 1;
a %= MOD;
while (b) {
if (b&1) res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
void Init() { for (int i = 0; i < NUM; i++)
{
int t = 1<<i;
wn[i] = PowMod(G, (MOD-1)/t);
}
}
void Change(LL a[], int len)
{
int i, j, k;
for (i = 1, j = len/2; i < len-1; i++)
{
if (i < j) swap(a[i], a[j]);
k = len/2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) j += k;
}
}
void NTT(LL a[], int len, int on)
{
Change(a, len);
int id = 0;
for (int h = 2; h <= len; h <<= 1)
{
id++;
for (int j = 0; j < len; j += h)
{
LL w = 1;
for (int k = j; k < j + h/2; k++)
{
LL u = a[k] % MOD;
LL t = mul(a[k+h/2], w);
a[k] = (u+t) % MOD;
a[k+h/2] = ((u-t)% MOD + MOD ) % MOD;
w = mul(w, wn[id]);
}
}
}
if (on == -1) {
for (int i = 1; i < len/2; i++)
swap(a[i], a[len-i]);
LL inv = PowMod(len, MOD-2);
for (int i = 0; i < len; i++)
a[i] = mul(a[i], inv);
}
}
void solve(LL a[], int n, LL b[], int m)
{
int len = 1;
while (len < n*2 || len < m*2) len <<= 1;
for (int i = n; i < len; i++) a[i] = 0;
for (int i = m; i < len; i++) b[i] = 0;
NTT(a, len, 1);
NTT(b, len, 1);
for (int i = 0; i < len; i++) a[i] = mul(a[i], b[i]);
NTT(a, len, -1);
}
}
LL f[N], p[N<<3], q[N<<3];
LL a;
int n, m;
LL F[N], Finv[N], inv[N];
void init(){
inv[1] = 1;
for (int i = 2; i < N; i++) {
inv[i] = (MOD-MOD/i) * inv[MOD%i] % MOD;
}
F[0] = Finv[0] = 1;
for (int i = 1; i < N; i++){
F[i] = F[i-1] * i % MOD;
Finv[i] = Finv[i-1] * inv[i] % MOD;
}
}
void solve()
{
for (int i = 0; i <= n; i++)
p[i] = F[i] * f[i] % MOD;//p(x)
q[0] = 1;
for (int i = 1; i <= n; i++)
q[i] = q[i-1] * (MOD-a) % MOD * inv[i] % MOD;//q(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//p'(x)
NTT::solve(p, n+1, q, n+1);//g''(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//g'(x)
for (int i = 0; i <= n; i++)
p[i] = p[i] * Finv[i] % MOD;//g(x)
}
int main()
{
init();
NTT::Init();
while (~scanf("%d", &n))
{
for (int i = 0; i <= n; i++) scanf("%lld", &f[i]);
scanf("%d", &m);
a = 0;
for (int i = 1; i <= m; i++)
{
LL x; scanf("%lld", &x);
a = (a+x) % MOD;
}
solve();
for (int i = 0; i <= n; i++) printf("%lld ", p[i]);
puts("");
}
}
HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3的更多相关文章
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
- HDU 6061 RXD and functions NTT
RXD and functions Problem Description RXD has a polynomial function f(x), f(x)=∑ni=0cixiRXD has a tr ...
- HDU 6061 RXD and functions(NTT)
题意 给定一个\(n\) 次的 \(f\) 函数,向右移动 \(m\) 次得到 \(g\) 函数,第 \(i\) 次移动长度是 \(a_i\) ,求 \(g\) 函数解析式的各项系数,对 ...
- HDU 6061 RXD and functions
题目链接:HDU-6061 题意:给定f(x),求f(x-A)各项系数. 思路:推导公式有如下结论: 然后用NTT解决即可. 代码: #include <set> #include < ...
- HDU 6060 - RXD and dividing | 2017 Multi-University Training Contest 3
/* HDU 6060 - RXD and dividing [ 分析,图论 ] | 2017 Multi-University Training Contest 3 题意: 给一个 n 个节点的树, ...
- HDU 6063 - RXD and math | 2017 Multi-University Training Contest 3
比赛时候面向过题队伍数目 打表- - 看了题解发现确实是这么回事,分析能力太差.. /* HDU 6063 - RXD and math [ 数学,规律 ] | 2017 Multi-Universi ...
- HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9
/* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
- 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟
/** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...
随机推荐
- Guava 工具类之joiner的使用
joiner主要用于对字符串的连接,也可用于对map中key value的连接 public class JoinerTest { private static final List<Strin ...
- [转帖]curl 的用法指南
curl 的用法指南 作者: 阮一峰 日期: 2019年9月 5日 感谢 腾讯课堂NEXT学院 赞助本站,腾讯官方的前端课程 免费试学. http://www.ruanyifeng.com/blo ...
- [转帖]System Dynamic Management Views
System Dynamic Management Views https://docs.microsoft.com/en-us/sql/relational-databases/system-dyn ...
- Oracle的查询-多表查询中的一些概念
--笛卡尔积 select * from emp e,dept d; --等值连接 select * from emp e,dept d where e.deptno=d.deptno --内连接 s ...
- sysbench配置使用
unzip sysbench-0.5.zipcd sysbench-0.5 #####sysbench下载:https://codeload.github.com/akopytov/sysbench/ ...
- LUA的table实现
数据结构 下面的结构体是lua中所定义的table typedef struct Table { CommonHeader; lu_byte flags; /* 1<<p means ta ...
- H5网页唤醒app,判断app安装
在阅读本文之前你首先应该对js有基本对掌握,并且对Scheme,intent有一定的理解.更多的是代码 上午给朋友做了一个产品引导页,但是需要判断ios系统的TestFlight是否安装,进行了goo ...
- python — 函数基础知识(一)
目录 1 面向过程编程与函数式编程 2 函数的基本结构 3 函数的参数 1 面向过程编程与函数式编程 截至目前我们所接触.所写的编程为:面向过程式编程[可读性差/可重用性差] # 面向过程编程 use ...
- 怎样使用js将文本复制到系统粘贴板中
需要使用到三个document方法: 1. document.execCommand(); 执行某个命令 2. document.queryCommandSupported(); 检测浏览器是否支持某 ...
- vue采坑之——vue里面渲染html 并添加样式
在工作中,有次遇到要把返回的字符串分割成两部分,一部分用另外的样式显示. 这时候,我想通过对得到字符串进行处理,在需要特别样式的字符串片段用html标签(用的span)包裹起来再通过变量绑定就好了.不 ...