每次NTT都忘记初始化,真的是写一个小时,Debug两个小时- -

/*
HDU 6061 - RXD and functions [ NTT ] | 2017 Multi-University Training Contest 3
题意:
给定多项式 F(x) = ∑[0<=i<=n] f(i)*x^i
求多项式 G(x) = F(x-a)
n <= 1e5
分析:
设 G(x) = ∑ g(i)*x^i
将 F(x-a) 按二项式定理展开后易得:
g(x) = ∑[x<=y<=n] Comb(y,x) * f(y) * (-a)^(y-x)
打开组合数,移项:
g(x)*x! = ∑[x<=y<=n] f(y)*y! * (-a)^(y-x) / (y-x)!
设 g'(x) = g(x)*x!
p(x) = f(y)*y!
q(x) = (-a)^x/x!
则 g'(x) = ∑[x<=y<=n] p(y) * q(y-x)
= ∑[1<=y<=n-x] p(y+x) * q(y)
设 g''(x) = g'(n-x)
则 g''(x) = ∑[1<=y<=x] p(n-(x-y)) * q(y)
设 p'(x) = p(n-x)
则 g''(x) = ∑[1<=y<=x] p'(x-y) * q(y)
算出这个卷积后回带即可
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e5+5;
const LL MOD = 998244353;
namespace NTT {
const int G = 3;
const int NUM = 20;
LL wn[20];
LL mul(LL x, LL y) {
return x*y% MOD;
}
LL PowMod(LL a, LL b) {
LL res = 1;
a %= MOD;
while (b) {
if (b&1) res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
void Init() { for (int i = 0; i < NUM; i++)
{
int t = 1<<i;
wn[i] = PowMod(G, (MOD-1)/t);
}
}
void Change(LL a[], int len)
{
int i, j, k;
for (i = 1, j = len/2; i < len-1; i++)
{
if (i < j) swap(a[i], a[j]);
k = len/2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) j += k;
}
}
void NTT(LL a[], int len, int on)
{
Change(a, len);
int id = 0;
for (int h = 2; h <= len; h <<= 1)
{
id++;
for (int j = 0; j < len; j += h)
{
LL w = 1;
for (int k = j; k < j + h/2; k++)
{
LL u = a[k] % MOD;
LL t = mul(a[k+h/2], w);
a[k] = (u+t) % MOD;
a[k+h/2] = ((u-t)% MOD + MOD ) % MOD;
w = mul(w, wn[id]);
}
}
}
if (on == -1) {
for (int i = 1; i < len/2; i++)
swap(a[i], a[len-i]);
LL inv = PowMod(len, MOD-2);
for (int i = 0; i < len; i++)
a[i] = mul(a[i], inv);
}
}
void solve(LL a[], int n, LL b[], int m)
{
int len = 1;
while (len < n*2 || len < m*2) len <<= 1;
for (int i = n; i < len; i++) a[i] = 0;
for (int i = m; i < len; i++) b[i] = 0;
NTT(a, len, 1);
NTT(b, len, 1);
for (int i = 0; i < len; i++) a[i] = mul(a[i], b[i]);
NTT(a, len, -1);
}
}
LL f[N], p[N<<3], q[N<<3];
LL a;
int n, m;
LL F[N], Finv[N], inv[N];
void init(){
inv[1] = 1;
for (int i = 2; i < N; i++) {
inv[i] = (MOD-MOD/i) * inv[MOD%i] % MOD;
}
F[0] = Finv[0] = 1;
for (int i = 1; i < N; i++){
F[i] = F[i-1] * i % MOD;
Finv[i] = Finv[i-1] * inv[i] % MOD;
}
}
void solve()
{
for (int i = 0; i <= n; i++)
p[i] = F[i] * f[i] % MOD;//p(x)
q[0] = 1;
for (int i = 1; i <= n; i++)
q[i] = q[i-1] * (MOD-a) % MOD * inv[i] % MOD;//q(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//p'(x)
NTT::solve(p, n+1, q, n+1);//g''(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//g'(x)
for (int i = 0; i <= n; i++)
p[i] = p[i] * Finv[i] % MOD;//g(x)
}
int main()
{
init();
NTT::Init();
while (~scanf("%d", &n))
{
for (int i = 0; i <= n; i++) scanf("%lld", &f[i]);
scanf("%d", &m);
a = 0;
for (int i = 1; i <= m; i++)
{
LL x; scanf("%lld", &x);
a = (a+x) % MOD;
}
solve();
for (int i = 0; i <= n; i++) printf("%lld ", p[i]);
puts("");
}
}

  

HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3的更多相关文章

  1. 2017 多校3 hdu 6061 RXD and functions

    2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...

  2. HDU 6061 RXD and functions NTT

    RXD and functions Problem Description RXD has a polynomial function f(x), f(x)=∑ni=0cixiRXD has a tr ...

  3. HDU 6061 RXD and functions(NTT)

    题意 给定一个\(n​\) 次的 \(f​\) 函数,向右移动 \(m​\) 次得到 \(g​\) 函数,第 \(i​\) 次移动长度是 \(a_i​\) ,求 \(g​\) 函数解析式的各项系数,对 ...

  4. HDU 6061 RXD and functions

    题目链接:HDU-6061 题意:给定f(x),求f(x-A)各项系数. 思路:推导公式有如下结论: 然后用NTT解决即可. 代码: #include <set> #include < ...

  5. HDU 6060 - RXD and dividing | 2017 Multi-University Training Contest 3

    /* HDU 6060 - RXD and dividing [ 分析,图论 ] | 2017 Multi-University Training Contest 3 题意: 给一个 n 个节点的树, ...

  6. HDU 6063 - RXD and math | 2017 Multi-University Training Contest 3

    比赛时候面向过题队伍数目 打表- - 看了题解发现确实是这么回事,分析能力太差.. /* HDU 6063 - RXD and math [ 数学,规律 ] | 2017 Multi-Universi ...

  7. HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9

    /* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...

  8. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  9. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

随机推荐

  1. js穿梭框;将两个table中的数据选中移动

    将table中选中的数据移动到右边: 点击一行中的任意一个位置,使其选中: 注:attr()和prop()都是jquery的方法: .attr() : 获取匹配的元素集合中的第一个元素的属性的值 或 ...

  2. bootstrap-table删除指定行注意事项

    方法有两种: 1.使用官方文档的数据(反正我试了2个小时都不行,如有大神请指导下):使用events和operate相结合的方式 2.不使用events,在formatter里面定义事件的实现. 上面 ...

  3. Kubernetes组件-DaemonSet

    ⒈简介 Replicationcontroller和ReplicaSet都用于在Kubermetes集群上部署运行特定数量的pod.但是,当某些情况下我们希望在集群中的每个节点上运行同一个指定的pod ...

  4. jupyter的控件交互

    jupyter实现控件交互 jupyter notebook 是一个交互式IDE 直接上jupyter notebook界面截图

  5. WPF 位图处理相关类

    位图的存储方式 开始之前,先了解下位图的存储方式 位图的像素都分配有特定的位置和颜色值.每个像素的颜色信息由RGB组合或者灰度值表示,根据位深度,可将位图分为1.4.8.16.24及32位图像等.每个 ...

  6. docker-registry的定制和性能分析

    docker-index Web UI Meta-data 元数据存储(附注.星级.公共库清单) 访问认证 token管理 存储镜像.以及镜像层的家族谱系 没有用户账户数据 不知道用户的账户和安全性 ...

  7. 牛客 26E 珂学送分2 (状压dp)

    珂...珂...珂朵莉给你出了一道送分题: 给你一个长为n的序列{vi},和一个数a,你可以从里面选出最多m个数 一个合法的选择的分数定义为选中的这些数的和加上额外规则的加分: 有b个额外的规则,第i ...

  8. linux——环境变量

    环境变量 基本概念: 一般是指在操作系统中用来指定操纵系统运行环境的一些参数 当我们用动态库链接成功的时候,其实就是相关的环境变量帮助编译器进行查找. 环境变量通常具有某种特殊用途,还有在系统当中通常 ...

  9. python selenium5 模拟点击+拖动+按照指定相对坐标拖动 58同城验证码

    #!/usr/bin/python # -*- coding: UTF-8 -*- # @Time : 2019年12月9日11:41:08 # @Author : shenghao/10347899 ...

  10. 阅读文章《DDD 领域驱动设计-如何 DDD?》的阅读笔记

    文章链接: https://www.cnblogs.com/xishuai/p/how-to-implement-ddd.html 文章作者: 田园里的蟋蟀 首先感谢作者写出这么好的文章. 以下是我的 ...