每次NTT都忘记初始化,真的是写一个小时,Debug两个小时- -

/*
HDU 6061 - RXD and functions [ NTT ] | 2017 Multi-University Training Contest 3
题意:
给定多项式 F(x) = ∑[0<=i<=n] f(i)*x^i
求多项式 G(x) = F(x-a)
n <= 1e5
分析:
设 G(x) = ∑ g(i)*x^i
将 F(x-a) 按二项式定理展开后易得:
g(x) = ∑[x<=y<=n] Comb(y,x) * f(y) * (-a)^(y-x)
打开组合数,移项:
g(x)*x! = ∑[x<=y<=n] f(y)*y! * (-a)^(y-x) / (y-x)!
设 g'(x) = g(x)*x!
p(x) = f(y)*y!
q(x) = (-a)^x/x!
则 g'(x) = ∑[x<=y<=n] p(y) * q(y-x)
= ∑[1<=y<=n-x] p(y+x) * q(y)
设 g''(x) = g'(n-x)
则 g''(x) = ∑[1<=y<=x] p(n-(x-y)) * q(y)
设 p'(x) = p(n-x)
则 g''(x) = ∑[1<=y<=x] p'(x-y) * q(y)
算出这个卷积后回带即可
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e5+5;
const LL MOD = 998244353;
namespace NTT {
const int G = 3;
const int NUM = 20;
LL wn[20];
LL mul(LL x, LL y) {
return x*y% MOD;
}
LL PowMod(LL a, LL b) {
LL res = 1;
a %= MOD;
while (b) {
if (b&1) res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
void Init() { for (int i = 0; i < NUM; i++)
{
int t = 1<<i;
wn[i] = PowMod(G, (MOD-1)/t);
}
}
void Change(LL a[], int len)
{
int i, j, k;
for (i = 1, j = len/2; i < len-1; i++)
{
if (i < j) swap(a[i], a[j]);
k = len/2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) j += k;
}
}
void NTT(LL a[], int len, int on)
{
Change(a, len);
int id = 0;
for (int h = 2; h <= len; h <<= 1)
{
id++;
for (int j = 0; j < len; j += h)
{
LL w = 1;
for (int k = j; k < j + h/2; k++)
{
LL u = a[k] % MOD;
LL t = mul(a[k+h/2], w);
a[k] = (u+t) % MOD;
a[k+h/2] = ((u-t)% MOD + MOD ) % MOD;
w = mul(w, wn[id]);
}
}
}
if (on == -1) {
for (int i = 1; i < len/2; i++)
swap(a[i], a[len-i]);
LL inv = PowMod(len, MOD-2);
for (int i = 0; i < len; i++)
a[i] = mul(a[i], inv);
}
}
void solve(LL a[], int n, LL b[], int m)
{
int len = 1;
while (len < n*2 || len < m*2) len <<= 1;
for (int i = n; i < len; i++) a[i] = 0;
for (int i = m; i < len; i++) b[i] = 0;
NTT(a, len, 1);
NTT(b, len, 1);
for (int i = 0; i < len; i++) a[i] = mul(a[i], b[i]);
NTT(a, len, -1);
}
}
LL f[N], p[N<<3], q[N<<3];
LL a;
int n, m;
LL F[N], Finv[N], inv[N];
void init(){
inv[1] = 1;
for (int i = 2; i < N; i++) {
inv[i] = (MOD-MOD/i) * inv[MOD%i] % MOD;
}
F[0] = Finv[0] = 1;
for (int i = 1; i < N; i++){
F[i] = F[i-1] * i % MOD;
Finv[i] = Finv[i-1] * inv[i] % MOD;
}
}
void solve()
{
for (int i = 0; i <= n; i++)
p[i] = F[i] * f[i] % MOD;//p(x)
q[0] = 1;
for (int i = 1; i <= n; i++)
q[i] = q[i-1] * (MOD-a) % MOD * inv[i] % MOD;//q(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//p'(x)
NTT::solve(p, n+1, q, n+1);//g''(x)
for (int i = 0; i <= n/2; i++)
swap(p[i], p[n-i]);//g'(x)
for (int i = 0; i <= n; i++)
p[i] = p[i] * Finv[i] % MOD;//g(x)
}
int main()
{
init();
NTT::Init();
while (~scanf("%d", &n))
{
for (int i = 0; i <= n; i++) scanf("%lld", &f[i]);
scanf("%d", &m);
a = 0;
for (int i = 1; i <= m; i++)
{
LL x; scanf("%lld", &x);
a = (a+x) % MOD;
}
solve();
for (int i = 0; i <= n; i++) printf("%lld ", p[i]);
puts("");
}
}

  

HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3的更多相关文章

  1. 2017 多校3 hdu 6061 RXD and functions

    2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...

  2. HDU 6061 RXD and functions NTT

    RXD and functions Problem Description RXD has a polynomial function f(x), f(x)=∑ni=0cixiRXD has a tr ...

  3. HDU 6061 RXD and functions(NTT)

    题意 给定一个\(n​\) 次的 \(f​\) 函数,向右移动 \(m​\) 次得到 \(g​\) 函数,第 \(i​\) 次移动长度是 \(a_i​\) ,求 \(g​\) 函数解析式的各项系数,对 ...

  4. HDU 6061 RXD and functions

    题目链接:HDU-6061 题意:给定f(x),求f(x-A)各项系数. 思路:推导公式有如下结论: 然后用NTT解决即可. 代码: #include <set> #include < ...

  5. HDU 6060 - RXD and dividing | 2017 Multi-University Training Contest 3

    /* HDU 6060 - RXD and dividing [ 分析,图论 ] | 2017 Multi-University Training Contest 3 题意: 给一个 n 个节点的树, ...

  6. HDU 6063 - RXD and math | 2017 Multi-University Training Contest 3

    比赛时候面向过题队伍数目 打表- - 看了题解发现确实是这么回事,分析能力太差.. /* HDU 6063 - RXD and math [ 数学,规律 ] | 2017 Multi-Universi ...

  7. HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9

    /* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...

  8. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  9. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

随机推荐

  1. Redis 学习笔记(篇十):Sentinel

    Sentinel(哨兵)是 Redis 的高可用解决方案:由一个或多个 Sentinel 实例组成的 Sentinel 系统可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主 ...

  2. Comet OJ Contest #15 D. 双十一特惠(困难版)

    以 $d(x)$ 表示正整数 $x$ 的十进制表示的数位之和.熟知下列关于 $d(x)$ 的结论: $d(x) \equiv x \pmod{9}$.从而对于任意正整数列 $a_1, a_2, \do ...

  3. git 使用中报错:LF will be replaced by CRLF in app.json

    git config --global core.autocrlf false //禁用自动转换

  4. Numpy学习之——数组创建

    Numpy学习之--数组创建 过程展示 import numpy as np a = np.array([2,3,9]) a array([2, 3, 9]) a.dtype dtype('int32 ...

  5. Python 第一节随堂练习

    作业: 1 从键盘输入一个整数,判断该数字能否被2和3同时整除,能否被2整除,能否被3整除,不能被2和3整除,输出相应信息 1 my_num = int(input('请输入一个整数')) 2 if ...

  6. 适合新手的160个creakme(二)

    先跑一下,然后找出关键字符串 关键字符串是You Get Wrong和Try Again,不过IDA好像识别不出来这个字符串,在Ollydbg中右键Search For,寻找所有字符串,可以找到这些字 ...

  7. Fiddler 抓包工具详解

    Fiddler是一个蛮好用的抓包工具,可以将网络传输发送与接受的数据包进行截获.重发.编辑.转存等操作.也可以用来检测网络安全.反正好处多多,举之不尽呀!当年学习的时候也蛮费劲,一些蛮实用隐藏的小功能 ...

  8. CF网络流练习

    1. 103E 大意: 给定$n$个集合, 满足对于任意的$k$, 任意$k$个集合的并集都不少于$k$. 要求选出$k$个集合$(k> 0)$, 使得并恰好等于$k$, 输出最少花费. Hal ...

  9. Entity的约束

    在DBContext的OnModelCreating()方法中调用上面的那个类 1.Infrastruture的Database文件夹建立Entityconfiguretions的文件夹 2.MyCo ...

  10. python selenium2 模拟点击+拖动 测试对象 58同城验证码

    #!/usr/bin/python # -*- coding: UTF-8 -*- # @Time : 2019/12/5 17:30 # @Author : shenghao/10347899@qq ...