考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可。

因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个超过限制-至少3个超过限制+至少4个超过限制

如何求上面的方案数?有限制时,把$c[i]$这个硬币取了超过$d[i]$次是不应该有贡献的,那么我们先取出$d[i]+1$个价值为$c[i]$的硬币,然后剩下的就是$f[sum-c[i]*(d[i]+1)]$,这就是我们所不需要的答案, 把它按容斥的思路搞掉就行了。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define R register int
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin))?EOF:*S++)
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
const int N=;
int n,tot;
int c[],d[];
ll f[N+];
signed main() {
for(R i=;i<=;++i) c[i]=g(); tot=g(); f[]=;
for(R i=;i<=;++i) for(R j=c[i];j<=N;++j) f[j]+=f[j-c[i]];
while(tot--) {
for(R i=;i<=;++i) d[i]=g(); register ll sum=g(),ans=;
for(R i=;i<=;++i) { R cnt=; register ll t=sum;
for(R j=;j<=;++j) if(i&(<<(j-))) t-=c[j]*(d[j]+),cnt^=;
if(t<) continue; cnt?ans-=f[t]:ans+=f[t];
} printf("%lld\n",ans);
}
}

2019.06.02

Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理的更多相关文章

  1. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  2. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

  3. Luogu P1450 [HAOI2008]硬币购物

    题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...

  4. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  5. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  6. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  7. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  8. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  9. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

随机推荐

  1. 如何判断你的windows系统是32位还是64位?

    [学习笔记] 如 何判断你的windows系统是32位还是64位? java -version时,如果没有64就是32位的.eclipse.ini中如果没有64,就是32位的.但是我们的ini文件里面 ...

  2. Codeforces 718A Efim and Strange Grade 程序分析

    Codeforces 718A Efim and Strange Grade 程序分析 jerry的程序 using namespace std; typedef long long ll; stri ...

  3. DP+线段树维护矩阵(2019牛客暑期多校训练营(第二场))--MAZE

    题意:https://ac.nowcoder.com/acm/contest/882/E 给你01矩阵,有两种操作:1是把一个位置0变1.1变0,2是问你从第一行i开始,到最后一行j有几种走法.你只能 ...

  4. 14.shell脚本学习

    简单的执行跟踪,会使得Shell显示每个被执行到的命令sh -x delete.sh 查找与替换grepsed -i "s/t_rs_customer/t_rs_customer_bak/g ...

  5. golang随机数及pipe

    var pipe1 = make(chan int, 1000) func piTest(){ for{ data := <- pipe1 fmt.Printf("get data:% ...

  6. centos中拉取postgre

    新搭建好的linux服务器环境,docker也配置好了. 第一步,下载postgre docker pull postgres:11 这里的版本号自己按照自己的需要来获取. 然而实际上没那么顺利,直接 ...

  7. Java写学生管理系统

    package Homework08;/*调试了一上午,收获:学会了昨天的debug的使用吸取教训:Student stus[]=new Student[2]; for (int i=0;i<s ...

  8. STM32-移植FATFS的NANDFLASH驱动

    一,建立工程FATFS源码 1,在http://elm-chan.org/fsw/ff/00index_e.html上下载ff007c.zip,并把ff007c.zip里面的 src文件夹复制到D:\ ...

  9. SQL生成自动序号 带有占位符(掩码),可以调整占位长度的语句

    MSSQL 语句 --声明变量 DECLARE @i int DECLARE @xh varchar(10) DECLARE @name varchar(10) Set @i = 0 --开始循环插入 ...

  10. php实现多进程、多线程

    孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程.孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作. 僵尸进程:一个进程使用f ...