HDU3501 Calculation 2 [欧拉函数]
Calculation 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6114 Accepted Submission(s): 2499
3
4
0
2
分析:
//It is made by HolseLee on 18th Jul 2019
//HDU 3501
#include<bits/stdc++.h>
#define mod 1000000007
using namespace std; typedef long long ll;
ll n,ans; inline ll get(ll x)
{
ll ret=n, y=x;
for(ll i=; i*i<=y; ++i) {
if( !(y%i) ) {
ret=ret*(i-)/i;
while( !(y%i) ) y/=i;
}
}
if( y!= ) ret=ret*(y-)/y;
return (ret*n/)%mod;
} int main()
{
while( ) {
scanf("%lld",&n);
if( !n ) break;
ans=((n-)*n/)%mod;
ans=(ans-get(n)+mod)%mod;
printf("%lld\n",ans);
}
return ;
}
HDU3501 Calculation 2 [欧拉函数]的更多相关文章
- hdu 3501 Calculation 2 (欧拉函数)
题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...
- HDU 3501 Calculation 2(欧拉函数)
Calculation 2 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submi ...
- HDU 3501 Calculation 2 (欧拉函数)
题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...
- HDU3501——欧拉函数裸题
给整数N(1 ≤ N ≤ 1000000000),求小于N的与N不互素的所有正整数的和. 思路:1.用欧拉函数求出小于N的与N互素的正整数的个数: 2.若 p 与 N 互素,则 N-p 必与 N 互素 ...
- 欧拉函数 || Calculation 2 || HDU 3501
题面: 题解:欧拉函数的基础应用,再套个很 easy 的等差数列前 n 项和就成了. 啊,最近在补作业+准备月考+学数论,题就没怎么写,感觉菜得一匹>_< CSL加油加油~! 代码: #i ...
- 欧拉函数:HDU3501-Calculation 2
Calculation 2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Probl ...
- hdu 3501 容斥原理或欧拉函数
Calculation 2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 杭电3501Calculation 2 欧拉函数
Calculation 2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
随机推荐
- 玩linux笔记——持续更新
说在最前面 centos 是基于redhat linux,所以最好的教程在红帽官网 https://access.redhat.com/documentation/en-us/red_hat_ente ...
- c# 自定义解析JSON字符串数据
解析json字符串有很多方式, 1 : 在网上下载json解析的dll类库并添加引用, 调用相关方法; 2 : 使用自带类库JavaScriptSerializer的序列号和反序列化; 对于以上两个方 ...
- ORACLE触发器的自治事务的注意事项
直接上代码: Create OR replace Trigger TR_ROBXMX_CLDJBHHX After INSERT OR UPDATE OR DELETE ON ROBXMX1 --要监 ...
- springboot+mybatis调用oracle存储过程
1 存储过程参数为VARCHAR 代码逻辑:controller层定义实体类对象entity,并entity.set给存储过程的输入参数赋值,把赋值后的实体类通过service层传到dao层,然后通过 ...
- tinymce富文本是在modal框中弹出显示的问题
记录一下,在用tinymce富文本的时候,由于是用在modal 上的,始终无法获取焦点,后来才发现问题出在tinymce在modal前创建了,所以导致这个问题,解决方案就是用 v-if="v ...
- 单变量图形的pandas方法
数据加载与展示: 1. 类别数据的Bar图 1.1 每一类对应有多少个 1.2 每类数量占整体的比值 1.3 对X轴进行排序
- python打印菱形
1.分析:首先python,我们分析了菱形的成分.双喜鸟seo输入2时,打印三行菱形:输入3时,打印五行菱形.也就是说,根据输入数字A,打印第2a-1行的菱形.菱形由一个三角形和一个倒三角形组成,两个 ...
- DS1302时钟
采用串行数据传送方式,SPI 3线接口 SPI总线 SPI接口是以主从方式工作的,通常有一个主器件和一个或多个从器件 MOSI – 主器件数据输出,从器件数据输入 MISO – 主器件数据输入,从器件 ...
- 【Distributed】大型网站高并发和高可用
一.DNS域名解析 二.大型网站系统应有的特点 三.网站架构演变过程 3.1 传统架构 3.2 分布式架构 3.3 SOA架构 3.4 微服务架构 四.高并发设计原则 4.1 拆分系统 4.2 服务化 ...
- 第六章、Cookies和Session
目录 第六章.Cookies和Session 一.来源 二.cookie工作原理 工作原理: 三.session的工作原理 工作原理: 四.如何操作cookie 服务端常见的cookie操作 五.案例 ...