题目传送门


  

Calculation 2

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6114    Accepted Submission(s): 2499

Problem Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
 
Input 
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
 
Output
For each test case, you should print the sum module 1000000007 in a line.
 
Sample Input

3
4
0

 
Sample Output
0
2
Author
GTmac
Source 
2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT

  分析:
  翻译下题面:给你一个正整数$N$,求小于$N$且与$N$不互质的正整数之和,对$1000000007$取模。
  容易想到,直接求肯定不好做,所以转化为求$1$到$N-1$与小于$N$且与$N$互质的正整数之和的差。
  需要用到这个定理:
  令$s$为小于$N$且与$N$互质的正整数之和,则$s=\phi(N)*N/2$。
  证明如下:
  首先明确:如果$gcd(n,x)=1,n>x$,则$gcd(n,n-x)=1$,由减法原理易证。
  那么令小于$N$且与$N$互质的正整数集合为$a[]$。那么
  $s=a[0]+a[1]+a[2]+...+a[\phi(n)]$
  可转化为
  $s=(n-a[0])+(n-a[1])+(n-a[2])+...+(n-a[\phi(n)])$
  (因为$a[]$中元素是不重复的,所以$n-a[i]$也是不重复的,且与$a[]$中的元素一一对应。)
  再将两式相加可得
  $2*s=n*\phi(n)$即$s=\phi(n)*n/2$
  那么这道题就好做了,求欧拉函数然后代公式就完事了。
  Code:
//It is made by HolseLee on 18th Jul 2019
//HDU 3501
#include<bits/stdc++.h>
#define mod 1000000007
using namespace std; typedef long long ll;
ll n,ans; inline ll get(ll x)
{
ll ret=n, y=x;
for(ll i=; i*i<=y; ++i) {
if( !(y%i) ) {
ret=ret*(i-)/i;
while( !(y%i) ) y/=i;
}
}
if( y!= ) ret=ret*(y-)/y;
return (ret*n/)%mod;
} int main()
{
while( ) {
scanf("%lld",&n);
if( !n ) break;
ans=((n-)*n/)%mod;
ans=(ans-get(n)+mod)%mod;
printf("%lld\n",ans);
}
return ;
}

HDU3501 Calculation 2 [欧拉函数]的更多相关文章

  1. hdu 3501 Calculation 2 (欧拉函数)

    题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...

  2. HDU 3501 Calculation 2(欧拉函数)

    Calculation 2 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  3. HDU 3501 Calculation 2 (欧拉函数)

    题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...

  4. HDU3501——欧拉函数裸题

    给整数N(1 ≤ N ≤ 1000000000),求小于N的与N不互素的所有正整数的和. 思路:1.用欧拉函数求出小于N的与N互素的正整数的个数: 2.若 p 与 N 互素,则 N-p 必与 N 互素 ...

  5. 欧拉函数 || Calculation 2 || HDU 3501

    题面: 题解:欧拉函数的基础应用,再套个很 easy 的等差数列前 n 项和就成了. 啊,最近在补作业+准备月考+学数论,题就没怎么写,感觉菜得一匹>_< CSL加油加油~! 代码: #i ...

  6. 欧拉函数:HDU3501-Calculation 2

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Probl ...

  7. hdu 3501 容斥原理或欧拉函数

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. 杭电3501Calculation 2 欧拉函数

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

随机推荐

  1. 玩linux笔记——持续更新

    说在最前面 centos 是基于redhat linux,所以最好的教程在红帽官网 https://access.redhat.com/documentation/en-us/red_hat_ente ...

  2. c# 自定义解析JSON字符串数据

    解析json字符串有很多方式, 1 : 在网上下载json解析的dll类库并添加引用, 调用相关方法; 2 : 使用自带类库JavaScriptSerializer的序列号和反序列化; 对于以上两个方 ...

  3. ORACLE触发器的自治事务的注意事项

    直接上代码: Create OR replace Trigger TR_ROBXMX_CLDJBHHX After INSERT OR UPDATE OR DELETE ON ROBXMX1 --要监 ...

  4. springboot+mybatis调用oracle存储过程

    1 存储过程参数为VARCHAR 代码逻辑:controller层定义实体类对象entity,并entity.set给存储过程的输入参数赋值,把赋值后的实体类通过service层传到dao层,然后通过 ...

  5. tinymce富文本是在modal框中弹出显示的问题

    记录一下,在用tinymce富文本的时候,由于是用在modal 上的,始终无法获取焦点,后来才发现问题出在tinymce在modal前创建了,所以导致这个问题,解决方案就是用 v-if="v ...

  6. 单变量图形的pandas方法

    数据加载与展示: 1. 类别数据的Bar图 1.1 每一类对应有多少个 1.2 每类数量占整体的比值 1.3 对X轴进行排序

  7. python打印菱形

    1.分析:首先python,我们分析了菱形的成分.双喜鸟seo输入2时,打印三行菱形:输入3时,打印五行菱形.也就是说,根据输入数字A,打印第2a-1行的菱形.菱形由一个三角形和一个倒三角形组成,两个 ...

  8. DS1302时钟

    采用串行数据传送方式,SPI 3线接口 SPI总线 SPI接口是以主从方式工作的,通常有一个主器件和一个或多个从器件 MOSI – 主器件数据输出,从器件数据输入 MISO – 主器件数据输入,从器件 ...

  9. 【Distributed】大型网站高并发和高可用

    一.DNS域名解析 二.大型网站系统应有的特点 三.网站架构演变过程 3.1 传统架构 3.2 分布式架构 3.3 SOA架构 3.4 微服务架构 四.高并发设计原则 4.1 拆分系统 4.2 服务化 ...

  10. 第六章、Cookies和Session

    目录 第六章.Cookies和Session 一.来源 二.cookie工作原理 工作原理: 三.session的工作原理 工作原理: 四.如何操作cookie 服务端常见的cookie操作 五.案例 ...