【数值计算方法】2&3维高斯积分的python实现
本文只给出pythont实现和例题,数学推导见【数值计算方法】数值积分&微分-python实现 - FE-有限元鹰 - 博客园
二维高斯积分
python实现二维高斯积分:
def Integ2dGuassLegendre(f,lowLimit:List[float]=[-1,-1],
upLimit:List[float]=[1,1],
n:int=3)->float:
"""给定积分区域[lowLimit,upLimit]和高斯积分点个数n(>=1),计算二维高斯-勒让德积分公式"""
a,b,c,d=lowLimit[0],upLimit[0],lowLimit[1],upLimit[1]
if n<=0:
raise ValueError("高斯-勒让德积分时,n必须大于0")
if n==1:
return 4*f(0,0)
if a==-1 and b==1 and c==-1 and d==1:
# 标准型积分
#计算权重和积分点位置
x_is,w_is=legendre_gauss_points_and_weights(n)
y_js,w_js=legendre_gauss_points_and_weights(n)
return np.sum([w_is[ind_x]*w_js[ind_y]*f(xi,yj) for ind_x,xi in enumerate(x_is) for ind_y,yj in enumerate(y_js) ])
else:
# 非标准型积分,积分区域:[a,b]x[c,d]
xt1=lambda t1: 0.5*(b-a)*t1+0.5*(b+a)
yt2=lambda t2: 0.5*(d-c)*t2+0.5*(d+c)
t1_is,w_is=legendre_gauss_points_and_weights(n)
t2_js,w_js=legendre_gauss_points_and_weights(n)
return np.sum([w_is[ind_x]*w_js[ind_y]*f(xt1(t1i),yt2(t2j))*(b-a)*(d-c)*0.25 for ind_x,t1i in enumerate(t1_is) for ind_y,t2j in enumerate(t2_js) ])
三维高斯积分
python实现:
def Integ3dGuassLegendre(f,lowLimit:List[float]=[-1,-1,-1],
upLimit:List[float]=[1,1,1],
n:int=3)->float:
"""给定积分区域[lowLimit,upLimit]和高斯积分点个数n(>=1),计算二维高斯-勒让德积分公式"""
a,b=lowLimit[0],upLimit[0]
c,d=lowLimit[1],upLimit[1]
g,h=lowLimit[2],upLimit[2]
if n<=0:
raise ValueError("高斯-勒让德积分时,n必须大于0")
if n==1:
return 8*f(0,0)
if a==-1 and b==1 and c==-1 and d==1:
# 标准型积分
#计算权重和积分点位置
x_is,w_is=legendre_gauss_points_and_weights(n)
y_js,w_js=legendre_gauss_points_and_weights(n)
z_js,w_ks=legendre_gauss_points_and_weights(n)
return np.sum([w_is[ind_x]*w_js[ind_y]*w_ks[ind_z]*f(xi,yj,zk) for ind_x,xi in enumerate(x_is) for ind_y,yj in enumerate(y_js) for ind_z,zk in enumerate(z_js)])
else:
# 非标准型积分,积分区域:[a,b]x[c,d]x[g,h]
xt1=lambda t1: 0.5*(b-a)*t1+0.5*(b+a)
yt2=lambda t2: 0.5*(d-c)*t2+0.5*(d+c)
zt3=lambda t3: 0.5*(h-g)*t3+0.5*(h+g)
t1_is,w_is=legendre_gauss_points_and_weights(n)
t2_js,w_js=legendre_gauss_points_and_weights(n)
t3_ks,w_ks=legendre_gauss_points_and_weights(n)
return np.sum([w_is[ind_x]*w_js[ind_y]*w_ks[ind_z]*f(xt1(t1i),yt2(t2j),zt3(t3k))*(b-a)*(d-c)*(h-g)*0.125 for ind_x,t1i in enumerate(t1_is) for ind_y,t2j in enumerate(t2_js) for ind_z,t3k in enumerate(t3_ks)])
验证
from formu_lib import *
import numpy as np
from scipy.integrate import dblquad
# 定义被积函数
def integrand(x, y):
return np.exp(x*x+y*y)
# 计算二重积分
result, error = dblquad(integrand, -1, 1, lambda x: -1, lambda x: 1)
print("numpy 二重积分结果:", result)
ans1=Integ2dGuassLegendre(integrand,[-1, -1],[1, 1],n=5)
print(f"本地二重积分结果:{ans1}")
from scipy.integrate import tplquad
# 定义被积函数
def integrand3(x, y, z):
return np.exp(x*x+y*y+z*z)
# 计算三重积分
result3, error = tplquad(integrand3, -1, 1, lambda x: -1, lambda x: 1, lambda x, y: -1, lambda x, y: 1)
ans2=Integ3dGuassLegendre(integrand3,[-1,-1,-1],[1,1,1],n=5)
print("numpy三重积分结果:", result3)
print(f"本地三重积分结果:{ans2}")
输出:
- numpy 二重积分结果: 8.557400519221307
- 本地二重积分结果:8.557173227239266
- numpy三重积分结果: 25.03299361973213
- 本地三重积分结果:25.03199627931168
【数值计算方法】2&3维高斯积分的python实现的更多相关文章
- 数值计算方法实验之newton多项式插值 (Python 代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- 数值计算方法实验之Hermite 多项式插值 (Python 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 数值计算方法实验之Lagrange 多项式插值 (Python 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 数值计算方法 | C语言实现几个数值计算方法(实验报告版)
目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...
- 【剑指Offer】数值的整数次方 解题报告(Python)
[剑指Offer]数值的整数次方 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-interviews ...
- 二维DCT变换 | Python实现
引言 最近专业课在学信息隐藏与数字水印,上到了变换域隐藏技术,提到了其中的DCT变换,遂布置了一个巨烦人的作业,让手动给两个\(8\times8\)的矩阵做二维DCT变换,在苦逼的算了一小时后,我决定 ...
- python运维之使用python进行批量管理主机
1. python运维之paramiko 2. FABRIC 一个与多台服务器远程交互的PYTHON库和工具 3. SSH连接与自动化部署工具paramiko与Fabric 4. Python批量管理 ...
- 数值的整数次方(C++ 和 Python 实现)
(说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 实现函数 double Power(double base, ...
- 运维开发:python websocket网页实时显示远程服务器日志信息
功能:用websocket技术,在运维工具的浏览器上实时显示远程服务器上的日志信息 一般我们在运维工具部署环境的时候,需要实时展现部署过程中的信息,或者在浏览器中实时显示程序日志给开发人员看.你还在用 ...
- 写给自己看的Linux运维基础(四) - python环境
pip - Python包管理工具 https://pip.pypa.io/en/latest/installing.html wget https://bootstrap.pypa.io/get-p ...
随机推荐
- arm mattermost
It's not so hard, here is my working steps for arm64 device. cd ~/build/mattermost wget https://raw. ...
- 如何安装和使用 Latte Dock
你知道什么是"停靠区Dock" 吧,它通常是你的应用程序"停靠"的底栏,以便快速访问. 许多发行版和桌面环境都提供了某种停靠实现.如果你的发行版没有" ...
- CSV文件处理工具-CsvUtil
介绍 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本). Hutool针对此格式,参考 ...
- 测试覆盖率 Java 覆盖率 Jacoco 插桩的不同形式总结和踩坑记录
https://testerhome.com/topics/20632 关于Jacoco的小结和踩坑记录 一.概述 测试覆盖率,老生常谈的话题.因为我测试理论基础不是很好,就不提什么需求覆盖率啦这样那 ...
- 关于Jetson nano (B02)如何部署Yolov8以及一些必要的知识点
一.前言 记录一个简单的安装和部署过程,尽管笔者也是按照教程来的,但奈何参考了很多教程,虽然写的都非常好,但是却很散,因此笔者这里想把这些教程的精华提炼出来,汇总并且写在正文处.还是老规矩,笔者也在学 ...
- Qt音视频开发21-通用硬解码
一.前言 硬件解码是图形芯片厂家提出的用GPU资源解码视频流的方案,与之相对的是软解,也就是传统的用CPU承担解码工作的方案:优点是效率高,功耗低.热功耗低,缺点是缺乏有力的支持(包括滤镜.字幕等), ...
- Windows 配置多版本JDK
@ 目录 前言 简介 一.下载并安装多个JDK版本 二.配置环境变量 2.1 点击高级系统设置 2.2 选择环境变量 2.3 配置CLASSPATH 2.4 配置JAVA_HOME 2.5 配置Pat ...
- C#中如何将图片添加为程序的资源
C#中将图片添加为程序的资源的步骤: 1.在C#程序的"Properties"文件夹中双击Resources.resx文件,以便打开资源文件,使其处于可编辑状态: 2.在打开后的R ...
- .NET 响应式编程 System.Reactive 系列文章(一):基础概念
.NET 响应式编程 System.Reactive 系列文章(一):基础概念 引言 在现代软件开发中,处理异步事件和数据流已经成为常见的需求,比如用户输入.网络请求.传感器数据等.这些数据流通常是无 ...
- VueH5页面中input控件placeholder提示字默认颜色修改与禁用时默认字体颜色修改
一.默认提示字颜色修改 不同浏览器的设置略有区别 以下是只选择name为color的input进行修改 //chrome谷歌浏览器,Safari苹果浏览器 input[name="color ...