16. MySQL 多版本并发控制
16. MySQL 多版本并发控制
@
1. 什么是MVCC
MVCC (Multiversion Concurrency Control),多版本并发控制。顾名思义,MVCC 是通过数据行的多个版本管理来实现数据库的 并发控制
。这项技术使得在InnoDB的事务隔离级别下执行 一致性读
操作有了保证。换言之,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样 在做查询的时候就不用等待另一个事务释放锁。
MVCC没有正式的标准,在不同的DBMS中MVCC的实现方式可能是不同的,也不是普遍使用的(大家可以参考相关的DBMS文档)。这里讲解InnoDB中MVCC的实现机制(MySQL其他的存储引擎并不支持它)。
2. 快照读与当前读
MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理 读-写冲突
,做到 即使有读写冲突时,也能做到 不加锁
, 非阻塞并发读
,而这个读指的就是 快照读
, 而非 当前读
。当前 读实际上是一种加锁的操作,是悲观锁的实现。而MVCC本质是采用乐观锁思想的一种方式。
2.1 快照读
快照读又叫一致性读,读取的是快照数据。不加锁的简单的 SELECT 都属于快照读,即不加锁的非阻塞 读;比如这样:
SELECT * FROM player WHERE ...
之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于MVCC,它在很多情况下, 避免了加锁操作,降低了开销。
既然是基于多版本,那么快照读可能读到的并不一定是数据的最新版本,而有可能是之前的历史版本。
快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读。
2.2 当前读
当前读读取的是记录的最新版本(最新数据,而不是历史版本的数据),读取时还要保证其他并发事务 不能修改当前记录,会对读取的记录进行加锁。加锁的 SELECT,或者对数据进行增删改都会进行当前 读。比如:
SELECT * FROM student LOCK IN SHARE MODE; # 共享锁
SELECT * FROM student FOR UPDATE; # 排他锁
INSERT INTO student values ... # 排他锁
DELETE FROM student WHERE ... # 排他锁
UPDATE student SET ... # 排他锁
3. 复习
3.1 再谈隔离级别
我们知道事务有 4 个隔离级别,可能存在三种并发问题:
3.2 隐藏字段、Undo Log版本链
回顾一下undo日志的版本链,对于使用 InnoDB 存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列。
trx_id
:每次一个事务对某条聚簇索引记录进行改动时,都会把该事务的事务id
赋值给trx_id
隐藏列。roll_pointer
:每次对某条聚簇索引记录进行改动时,都会把旧的版本写入到undo日志
中,然 后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。
假设插入该记录的事务id
为8
,那么此刻该条记录的示意图如下所示:
insert undo只在事务回滚时起作用,当事务提交后,该类型的undo日志就没用了,它占用的Undo Log Segment也会被系统回收(也就是该undo日志占用的Undo页面链表要么被重用,要么被释放)。
假设之后两个事务id分别为 10
、 20
的事务对这条记录进行 UPDATE
操作,操作流程如下:
每次对记录进行改动,都会记录一条undo日志,每条undo日志也都有一个 roll_pointer
属性 ( INSERT
操作对应的undo日志没有该属性,因为该记录并没有更早的版本),可以将这些 undo日志
都连起来,串成一个链表:
对该记录每次更新后,都会将旧值放到一条 undo日志
中,就算是该记录的一个旧版本,随着更新次数 的增多,所有的版本都会被 roll_pointer
属性连接成一个链表,我们把这个链表称之为 版本链
,版 本链的头节点就是当前记录最新的值。
每个版本中还包含生成该版本时对应的事务id
。
4. MVCC实现原理之ReadView
MVCC 的实现依赖于:隐藏字段
、Undo Log
、Read View
。
4.1 什么是ReadView
4.2 设计思路
使用 READ UNCOMMITTED
隔离级别的事务,由于可以读到未提交事务修改过的记录,所以直接读取记录的最新版本就好了。
使用 SERIALIZABLE
隔离级别的事务,InnoDB规定使用加锁的方式来访问记录。
使用 READ COMMITTED
和 REPEATABLE READ
隔离级别的事务,都必须保证读到 已经提交了的
事务修改过的记录。假如另一个事务已经修改了记录但是尚未提交,是不能直接读取最新版本的记录的,核心问题就是需要判断一下版本链中的哪个版本是当前事务可见的,这是ReadView要解决的主要问题。
这个ReadView中主要包含4个比较重要的内容,分别如下:
creator_trx_id
,创建这个 Read View 的事务 ID。说明:只有在对表中的记录做改动时(执行INSERT、DELETE、UPDATE这些语句时)才会为 事务分配事务id,否则在一个只读事务中的事务id值都默认为0。
trx_ids
,表示在生成ReadView时当前系统中活跃的读写事务的事务id列表
。up_limit_id
,活跃的事务中最小的事务 ID。low_limit_id
,表示生成ReadView时系统中应该分配给下一个事务的 id 值。low_limit_id 是系 统最大的事务id值,这里要注意是系统中的事务id,需要区别于正在活跃的事务ID。
注意:low_limit_id并不是trx_ids中的最大值,事务id是递增分配的。比如,现在有id为1, 2,3这三个事务,之后id为3的事务提交了。那么一个新的读事务在生成ReadView时, trx_ids就包括1和2,up_limit_id的值就是1,low_limit_id的值就是4。
4.3 ReadView的规则
有了这个ReadView,这样在访问某条记录时,只需要按照下边的步骤判断记录的某个版本是否可见。
- 如果被访问版本的trx_id属性值与ReadView中的 creator_trx_id 值相同,意味着当前事务在访问它自己修改过的记录,所以该版本可以被当前事务访问。
- 如果被访问版本的trx_id属性值小于ReadView中的 up_limit_id 值,表明生成该版本的事务在当前事务生成ReadView前已经提交,所以该版本可以被当前事务访问。
- 如果被访问版本的trx_id属性值大于或等于ReadView中的 low_limit_id 值,表明生成该版本的事务在当前事务生成ReadView后才开启,所以该版本不可以被当前事务访问。
- 如果被访问版本的trx_id属性值在ReadView的 up_limit_id 和 low_limit_id 之间,那就需要判断一下trx_id属性值是不是在 trx_ids 列表中。
- 如果在,说明创建ReadView时生成该版本的事务还是活跃的,该版本不可以被访问。
- 如果不在,说明创建ReadView时生成该版本的事务已经被提交,该版本可以被访问。
4.4 MVCC整体操作流程
了解了这些概念之后,我们来看下当查询一条记录的时候,系统如何通过MVCC找到它:
- 首先获取事务自己的版本号,也就是事务 ID;
- 获取 ReadView;
- 查询得到的数据,然后与 ReadView 中的事务版本号进行比较;
- 如果不符合 ReadView 规则,就需要从 Undo Log 中获取历史快照;
- 最后返回符合规则的数据。
在隔离级别为读已提交(Read Committed)时,一个事务中的每一次 SELECT 查询都会重新获取一次 Read View。
如表所示:
注意,此时同样的查询语句都会重新获取一次 Read View,这时如果 Read View 不同,就可能产生不可重复读或者幻读的情况。
当隔离级别为可重复读的时候,就避免了不可重复读,这是因为一个事务只在第一次 SELECT 的时候会获取一次 Read View,而后面所有的 SELECT 都会复用这个 Read View,如下表所示:
5. 举例说明
5.1 READ COMMITTED隔离级别下
READ COMMITTED :每次读取数据前都生成一个ReadView。
现在有两个 事务id
分别为 10
、 20
的事务在执行:
# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;
# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
说明:事务执行过程中,只有在第一次真正修改记录时(比如使用INSERT、DELETE、UPDATE语句),才会被分配一个单独的事务id,这个事务id是递增的。所以我们才在事务2中更新一些别的表的记录,目的是让它分配事务id。
此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:
假设现在有一个使用 READ COMMITTED
隔离级别的事务开始执行:
# 使用READ COMMITTED隔离级别的事务
BEGIN;
# SELECT1:Transaction 10、20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
之后,我们把 事务id
为 10
的事务提交一下:
# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;
COMMIT;
然后再到 事务id
为 20
的事务中更新一下表 student
中 id
为 1
的记录:
# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
UPDATE student SET name="钱七" WHERE id=1;
UPDATE student SET name="宋八" WHERE id=1;
此刻,表student中 id
为 1
的记录的版本链就长这样:
然后再到刚才使用 READ COMMITTED
隔离级别的事务中继续查找这个 id 为 1 的记录,如下:
# 使用READ COMMITTED隔离级别的事务
BEGIN;
# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'王五'
5.2 REPEATABLE READ隔离级别下
使用 REPEATABLE READ
隔离级别的事务来说,只会在第一次执行查询语句时生成一个 ReadView
,之后的查询就不会重复生成了。
比如,系统里有两个 事务id
分别为 10
、 20
的事务在执行:
# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;
# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:
假设现在有一个使用 REPEATABLE READ
隔离级别的事务开始执行:
# 使用REPEATABLE READ隔离级别的事务
BEGIN;
# SELECT1:Transaction 10、20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
之后,我们把 事务id
为 10
的事务提交一下,就像这样:
# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;
COMMIT;
然后再到 事务id
为 20
的事务中更新一下表 student
中 id
为 1
的记录:
# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
UPDATE student SET name="钱七" WHERE id=1;
UPDATE student SET name="宋八" WHERE id=1;
此刻,表student 中 id
为 1
的记录的版本链长这样:
然后再到刚才使用 REPEATABLE READ
隔离级别的事务中继续查找这个 id
为 1
的记录,如下:
# 使用REPEATABLE READ隔离级别的事务
BEGIN;
# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值仍为'张三'
这次SELECT
查询得到的结果是重复的,记录的列c
值都是张三
,这就是可重复读
的含义。如果我们之后再把事务id
为20
的记录提交了,然后再到刚才使用REPEATABLE READ
隔离级别的事务中继续查找这个id
为1
的记录,得到的结果还是张三
,具体执行过程大家可以自己分析一下。
5.3 如何解决幻读
接下来说明InnoDB 是如何解决幻读的。
假设现在表 student 中只有一条数据,数据内容中,主键 id=1,隐藏的 trx_id=10,它的 undo log 如下图所示。
假设现在有事务 A 和事务 B 并发执行,事务 A
的事务 id 为 20
, 事务 B
的事务 id 为 30
。
步骤1:事务 A 开始第一次查询数据,查询的 SQL 语句如下。
select * from student where id >= 1;
在开始查询之前,MySQL 会为事务 A 产生一个 ReadView,此时 ReadView 的内容如下: trx_ids= [20,30] , up_limit_id=20 , low_limit_id=31 , creator_trx_id=20
。
由于此时表 student 中只有一条数据,且符合 where id>=1 条件,因此会查询出来。然后根据 ReadView 机制,发现该行数据的trx_id=10,小于事务 A 的 ReadView 里 up_limit_id,这表示这条数据是事务 A 开启之前,其他事务就已经提交了的数据,因此事务 A 可以读取到。
结论:事务 A 的第一次查询,能读取到一条数据,id=1。
步骤2:接着事务 B(trx_id=30),往表 student 中新插入两条数据,并提交事务。
insert into student(id,name) values(2,'李四');
insert into student(id,name) values(3,'王五');
此时表student 中就有三条数据了,对应的 undo 如下图所示:
步骤3:接着事务 A 开启第二次查询,根据可重复读隔离级别的规则,此时事务 A 并不会再重新生成 ReadView。此时表 student 中的 3 条数据都满足 where id>=1 的条件,因此会先查出来。然后根据 ReadView 机制,判断每条数据是不是都可以被事务 A 看到。
1)首先 id=1 的这条数据,前面已经说过了,可以被事务 A 看到。
2)然后是 id=2 的数据,它的 trx_id=30,此时事务 A 发现,这个值处于 up_limit_id 和 low_limit_id 之 间,因此还需要再判断 30 是否处于 trx_ids 数组内。由于事务 A 的 trx_ids=[20,30],因此在数组内,这表 示 id=2 的这条数据是与事务 A 在同一时刻启动的其他事务提交的,所以这条数据不能让事务 A 看到。
3)同理,id=3 的这条数据,trx_id 也为 30,因此也不能被事务 A 看见。
结论:最终事务 A 的第二次查询,只能查询出 id=1 的这条数据。这和事务 A 的第一次查询的结果是一样 的,因此没有出现幻读现象,所以说在 MySQL 的可重复读隔离级别下,不存在幻读问题。
6. 总结
这里介绍了 MVCC 在 READ COMMITTD
、 REPEATABLE READ
这两种隔离级别的事务在执行快照读操作时 访问记录的版本链的过程。这样使不同事务的 读-写
、 写-读
操作并发执行,从而提升系统性能。
核心点在于 ReadView 的原理, READ COMMITTD
、 REPEATABLE READ
这两个隔离级别的一个很大不同 就是生成ReadView的时机不同:
READ COMMITTD
在每一次进行普通SELECT操作前都会生成一个ReadViewREPEATABLE READ
只在第一次进行普通SELECT操作前生成一个ReadView,之后的查询操作都重复 使用这个ReadView就好了。
通过MVCC我们可以解决:
7. 最后:
“在这个最后的篇章中,我要表达我对每一位读者的感激之情。你们的关注和回复是我创作的动力源泉,我从你们身上吸取了无尽的灵感与勇气。我会将你们的鼓励留在心底,继续在其他的领域奋斗。感谢你们,我们总会在某个时刻再次相遇。”
16. MySQL 多版本并发控制的更多相关文章
- MySQL多版本并发控制机制(MVCC)-源码浅析
MySQL多版本并发控制机制(MVCC)-源码浅析 前言 作为一个数据库爱好者,自己动手写过简单的SQL解析器以及存储引擎,但感觉还是不够过瘾.<<事务处理-概念与技术>>诚然 ...
- SQL事务的四种隔离级别和MySQL多版本并发控制
SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的那些改变时可见的,那些是不可见的.低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销. ReadUncommitted( ...
- MySQL——多版本并发控制
核心心知识点: (1)MVCC的优点和缺点 (2)MVCC的工作机制 之前在提及幻读的时候,提到过InnoDB的多版本并发控制可以解决幻读问题. 大多数MySQL的事务性存储引擎,例如InnoDB.F ...
- MySQL多版本并发控制——MVCC机制分析
MVCC,即多版本并发控制(Multi-Version Concurrency Control)指的是,通过版本链维护一个数据的多个版本,使得读写操作没有冲突,可保证不同事务读写.写读操作并发执行,提 ...
- MySQL多版本并发控制(MVCC)
MVCC是行级锁的一个变种,但是它在很多的情况下避免了加锁操作,因此开销更低.MySQL,包括Oracle.PostgreSQL都实现了MVCC,虽然每个关系数据库实现不一样,但大都是实现了非阻塞的读 ...
- mysql 多版本并发控制
查看事务隔离级别 SHOW VARIABLES LIKE "%iso%" MVCC 通过给每张表多加两个隐藏列来实现,一个保存了行的创建时间,一个保存了行的过期时间(或删除时间), ...
- MySQL 多版本并发控制(MVCC)
可以认为MVCC是行级锁的一个变种,但是它在很多情况下避免了加锁的操作,因此开销会很低.主要实现的是非阻塞的读操作,写操作也只是锁定必要的行.MVCC的实现是通过保存数据在某个时间点的快照来实现的,也 ...
- MySQL MVCC(多版本并发控制)
概述 为了提高并发MySQL加入了多版本并发控制,它把旧版本记录保存在了共享表空间(undolog),当事务提交之后将重做日志写入磁盘(前提innodb_flush_log_at_trx_commit ...
- mysql的mvcc(多版本并发控制)
mysql的mvcc(多版本并发控制) 我们知道,mysql的innodb采用的是行锁,而且采用了多版本并发控制来提高读操作的性能. 什么是多版本并发控制呢 ?其实就是在每一行记录的后面增加两个隐藏列 ...
- Mysql 的InnoDB事务方面的 多版本并发控制如何实现 MVCC
Mysql的MVCC不能解决幻读的问题,但是Mysql还有间隙锁功能,Mysql的间隙锁工作在Repeatable Read隔离级别下面,可以防止幻读, 参考:Mysql 间隙锁原理,以及Repeat ...
随机推荐
- 关于ASCII码的一些信息(转载自https://blog.csdn.net/na_tion/article/details/50148883)
ASCII码分基本表(128个字符,从00000000到01111111).扩展表(256个字符,从00000000到11111111)和压缩表(64个字符),我们经常用的是128个的基本表,而在一些 ...
- Python合成多个视频为一个脚本
编写背景: 由于线上用户反馈媒体添加页加载时间很长,猜测是由于本地视频内存过大引起,于是编写此脚本以便快速生成内存很大的视频 代码如下: # coding=utf-8 from moviepy.edi ...
- MySQL 中有哪些锁类型?
MySQL 中有哪些锁类型? 在 MySQL 中,锁是用于管理并发访问的机制,以保证数据一致性和完整性.MySQL 支持多种类型的锁,按照其粒度和用途可以分为以下几类. 1. 按粒度分类 表锁(Tab ...
- kettle介绍-Step之CSV Input
CSV Input/CSV 文件输入介绍 CSV 文件输入步骤主要用于将 CSV 格式的文本文件按照一定的格式输入至 流中 Step name:步骤的名称,在单一转换中,名称必须唯一 Filename ...
- react项目vite报错:UnhandledPromiseRejectionWarning: SyntaxError: Unexpected token '??='
问题: vite报错:UnhandledPromiseRejectionWarning: SyntaxError: Unexpected token '??=' 今天clone一个vite的项目,安装 ...
- 关于Cesium渲染PrimitiveCollection和图层的树状管理的问题
原文:关于Cesium渲染PrimitiveCollection和图层的树状管理的问题 - 搜栈网 (seekstack.cn)
- 前端js需要连接后端c#的wss服务
背景前端js需要连接后端wss服务 前端:js后端:c# - 控制台搭建wss服务器 步骤1 wss需要ssl认证,所以需要个证书,随便找一台linux的服务器(windows的话,自己安装下open ...
- 题解:P10858 [HBCPC2024] Long Live
给你两个数 x,yx,yx,y 让你找到一组 a,ba,ba,b,使 lcm(x,y)gcd(x,y)=ab\sqrt{\frac{\operatorname{lcm}(x,y)}{\gcd(x, ...
- 把 Java WebApi 快速转为 Mcp-Server(使用 Solon AI MCP)
solon-ai-mcp,提供了各种 mcp 相关能力,支持 java8, java11, java17, java21, java24 .是 solon-ai 项目的重要组成部分,也可以嵌入到 sp ...
- 网络编程:反应堆_I/O模型和多线程模型实现
多线程设计的几个考虑 在反应堆reactor框架设计中,main reactor线程是一个acceptor线程,这个线程一旦创建,会以event_loop形式阻塞在event_dispatcher的d ...