opengl 学习 之 10 lesson

简介

透明度

简单来说让设定的透明度起作用。

link

http://www.opengl-tutorial.org/uncategorized/2017/06/07/website-update/

core code

	// Enable blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

==

New color in framebuffer =
current alpha in framebuffer * current color in framebuffer +
(1 - current alpha in framebuffer) * shader's output color

当前的在显存中的颜色 = 当前的透明度 * 颜色 + (1-当前透明度) * 经过着色器后输出的颜色

  • 其实不是特别清楚上面这条公式,经过着色器输出的颜色是什么意思?
  • 个人感觉Blend更倾向于颜色的相加

Example from the image above, with red on top :


new color = 0.5*(0,1,0) + (1-0.5)*(1,0.5,0.5); // (the red was already blended with the white background)
new color = (1, 0.75, 0.25) = the same orange

code

// Include standard headers
#include <stdio.h>
#include <stdlib.h>
#include <vector> // Include GLEW
#include <GL/glew.h> // Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window; // Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm; #include <common/shader.hpp>
#include <common/texture.hpp>
#include <common/controls.hpp>
#include <common/objloader.hpp>
#include <common/vboindexer.hpp> int main( void )
{
// Initialise GLFW
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW\n" );
getchar();
return -1;
} glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // Open a window and create its OpenGL context
window = glfwCreateWindow( 1024, 768, "Tutorial 10 - Transparency", NULL, NULL);
if( window == NULL ){
fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
getchar();
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window); // Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
getchar();
glfwTerminate();
return -1;
} // Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Hide the mouse and enable unlimited mouvement
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // Set the mouse at the center of the screen
glfwPollEvents();
glfwSetCursorPos(window, 1024/2, 768/2); // Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f); // Enable depth test
glEnable(GL_DEPTH_TEST);
// Accept fragment if it closer to the camera than the former one
glDepthFunc(GL_LESS); // Cull triangles which normal is not towards the camera
//glEnable(GL_CULL_FACE); // Not this time ! GLuint VertexArrayID;
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID); // Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders( "StandardShading.vertexshader", "StandardTransparentShading.fragmentshader" ); // Get a handle for our "MVP" uniform
GLuint MatrixID = glGetUniformLocation(programID, "MVP");
GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
GLuint ModelMatrixID = glGetUniformLocation(programID, "M"); // Load the texture
GLuint Texture = loadDDS("uvmap.DDS"); // Get a handle for our "myTextureSampler" uniform
GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler"); // Read our .obj file
std::vector<glm::vec3> vertices;
std::vector<glm::vec2> uvs;
std::vector<glm::vec3> normals;
bool res = loadOBJ("suzanne.obj", vertices, uvs, normals); std::vector<unsigned short> indices;
std::vector<glm::vec3> indexed_vertices;
std::vector<glm::vec2> indexed_uvs;
std::vector<glm::vec3> indexed_normals;
indexVBO(vertices, uvs, normals, indices, indexed_vertices, indexed_uvs, indexed_normals); // Load it into a VBO GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_vertices.size() * sizeof(glm::vec3), &indexed_vertices[0], GL_STATIC_DRAW); GLuint uvbuffer;
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_uvs.size() * sizeof(glm::vec2), &indexed_uvs[0], GL_STATIC_DRAW); GLuint normalbuffer;
glGenBuffers(1, &normalbuffer);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_normals.size() * sizeof(glm::vec3), &indexed_normals[0], GL_STATIC_DRAW); // Generate a buffer for the indices as well
GLuint elementbuffer;
glGenBuffers(1, &elementbuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW); // Get a handle for our "LightPosition" uniform
glUseProgram(programID);
GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace"); // For speed computation
double lastTime = glfwGetTime();
int nbFrames = 0; // Enable blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); do{ // Measure speed
double currentTime = glfwGetTime();
nbFrames++;
if ( currentTime - lastTime >= 1.0 ){ // If last prinf() was more than 1sec ago
// printf and reset
printf("%f ms/frame\n", 1000.0/double(nbFrames));
nbFrames = 0;
lastTime += 1.0;
} // Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Use our shader
glUseProgram(programID); // Compute the MVP matrix from keyboard and mouse input
computeMatricesFromInputs();
glm::mat4 ProjectionMatrix = getProjectionMatrix();
glm::mat4 ViewMatrix = getViewMatrix();
glm::mat4 ModelMatrix = glm::mat4(1.0);
glm::mat4 MVP = ProjectionMatrix * ViewMatrix * ModelMatrix; // Send our transformation to the currently bound shader,
// in the "MVP" uniform
glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]); glm::vec3 lightPos = glm::vec3(4,4,4);
glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z); // Bind our texture in Texture Unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, Texture);
// Set our "myTextureSampler" sampler to use Texture Unit 0
glUniform1i(TextureID, 0); // 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
); // 2nd attribute buffer : UVs
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, // attribute
2, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
); // 3rd attribute buffer : normals
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glVertexAttribPointer(
2, // attribute
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
); // Index buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer); // Draw the triangles !
glDrawElements(
GL_TRIANGLES, // mode
indices.size(), // count
GL_UNSIGNED_SHORT, // type
(void*)0 // element array buffer offset
); glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2); // Swap buffers
glfwSwapBuffers(window);
glfwPollEvents(); } // Check if the ESC key was pressed or the window was closed
while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
glfwWindowShouldClose(window) == 0 ); // Cleanup VBO and shader
glDeleteBuffers(1, &vertexbuffer);
glDeleteBuffers(1, &uvbuffer);
glDeleteBuffers(1, &normalbuffer);
glDeleteBuffers(1, &elementbuffer);
glDeleteProgram(programID);
glDeleteTextures(1, &Texture);
glDeleteVertexArrays(1, &VertexArrayID); // Close OpenGL window and terminate GLFW
glfwTerminate(); return 0;
}

#version 330 core // Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 LightDirection_cameraspace; // Ouput data
out vec4 color; // Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;
uniform mat4 MV;
uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties
// You probably want to put them as uniforms
vec3 LightColor = vec3(1,1,1);
float LightPower = 50.0f; // Material properties
vec3 MaterialDiffuseColor = texture( myTextureSampler, UV ).rgb;
vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor;
vec3 MaterialSpecularColor = vec3(0.3,0.3,0.3); // Distance to the light
float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space
vec3 n = normalize( Normal_cameraspace );
// Direction of the light (from the fragment to the light)
vec3 l = normalize( LightDirection_cameraspace );
// Cosine of the angle between the normal and the light direction,
// clamped above 0
// - light is at the vertical of the triangle -> 1
// - light is perpendicular to the triangle -> 0
// - light is behind the triangle -> 0
float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera)
vec3 E = normalize(EyeDirection_cameraspace);
// Direction in which the triangle reflects the light
vec3 R = reflect(-l,n);
// Cosine of the angle between the Eye vector and the Reflect vector,
// clamped to 0
// - Looking into the reflection -> 1
// - Looking elsewhere -> < 1
float cosAlpha = clamp( dot( E,R ), 0,1 ); color.rgb =
// Ambient : simulates indirect lighting
MaterialAmbientColor +
// Diffuse : "color" of the object
MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) +
// Specular : reflective highlight, like a mirror
MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); color.a = 0.3;
}
#version 330 core

// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;
layout(location = 2) in vec3 vertexNormal_modelspace; // Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 LightDirection_cameraspace; // Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;
uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position
gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position
Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space.
// In camera space, the camera is at the origin (0,0,0).
vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz;
EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity.
vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz;
LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // Normal of the the vertex, in camera space
Normal_cameraspace = ( V * M * vec4(vertexNormal_modelspace,0)).xyz; // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not. // UV of the vertex. No special space for this one.
UV = vertexUV;
}

opengl 学习 之 10 lesson的更多相关文章

  1. OpenGL学习进程(10)第七课:四边形绘制与动画基础

        本节是OpenGL学习的第七个课时,下面以四边形为例介绍绘制OpenGL动画的相关知识:     (1)绘制几种不同的四边形: 1)四边形(GL_QUADS) OpenGL的GL_QUADS图 ...

  2. OpenGL学习进程(12)第九课:矩阵乘法实现3D变换

    本节是OpenGL学习的第九个课时,下面将详细介绍OpenGL的多种3D变换和如何操作矩阵堆栈.     (1)3D变换: OpenGL中绘制3D世界的空间变换包括:模型变换.视图变换.投影变换和视口 ...

  3. OpenGL学习进程(11)第八课:颜色绘制的详解

        本节是OpenGL学习的第八个课时,下面将详细介绍OpenGL的颜色模式,颜色混合以及抗锯齿.     (1)颜色模式: OpenGL支持两种颜色模式:一种是RGBA,一种是颜色索引模式. R ...

  4. OpenGL学习笔记:拾取与选择

    转自:OpenGL学习笔记:拾取与选择 在开发OpenGL程序时,一个重要的问题就是互动,假设一个场景里面有很多元素,当用鼠标点击不同元素时,期待作出不同的反应,那么在OpenGL里面,是怎么知道我当 ...

  5. OpenGL学习之路(一)

    1 引子 虽然是计算机科班出身,但从小对几何方面的东西就不太感冒,空间想象能力也较差,所以从本科到研究生,基本没接触过<计算机图形学>.为什么说基本没学过呢?因为好奇(尤其是惊叹于三维游戏 ...

  6. OpenGL学习之路(三)

    1 引子 这些天公司一次次的软件发布节点忙的博主不可开交,另外还有其它的一些事也占用了很多时间.现在坐在电脑前,在很安静的环境下,与大家分享自己的OpenGL学习笔记和理解心得,感到格外舒服.这让我回 ...

  7. OpenGL学习之路(四)

    1 引子 上次读书笔记主要是学习了应用三维坐标变换矩阵对二维的图形进行变换,并附带介绍了GLSL语言的编译.链接相关的知识,之后介绍了GLSL中变量的修饰符,着重介绍了uniform修饰符,来向着色器 ...

  8. OpenGL学习之windows下安装opengl的glut库

    OpenGL学习之windows下安装opengl的glut库 GLUT不是OpenGL所必须的,但它会给我们的学习带来一定的方便,推荐安装.  Windows环境下的GLUT下载地址:(大小约为15 ...

  9. OpenGL学习进程(7)第五课:点、边和图形(二)边

    本节是OpenGL学习的第五个课时,下面介绍OpenGL边的相关知识: (1)边的概念: 数学上的直线没有宽度,但OpenGL的直线则是有宽度的.同时,OpenGL的直线必须是有限长度,而不是像数学概 ...

  10. OpenGL学习进程(6)第四课:点、边和图形(一)点

    本节是OpenGL学习的第四个课时,下面介绍OpenGL点的相关知识:     (1)点的概念:     数学上的点,只有位置,没有大小.但在计算机中,无论计算精度如何提高,始终不能表示一个无穷小的点 ...

随机推荐

  1. 1.4K star!几分钟搞定AI视频创作,这个开源神器让故事可视化如此简单!

    嗨,大家好,我是小华同学,关注我们获得"最新.最全.最优质"开源项目和高效工作学习方法 story-flicks 是一个基于AI技术的自动化视频生成工具,能够将文字剧本快速转化为高 ...

  2. Multisim14.0安装包免费获取,超详细中文安装步骤助你快速上手!

    Multisim14.0简介 Multisim14.0是由美国国家仪器公司(NI)推出的专业电子设计自动化](EDA)工具,广泛应用于电路设计.仿真验证.教学实验及科研开发领域.其核心功能是通过虚拟仿 ...

  3. Windows安装PostgreSQL、PostGIS数据库的方法

      本文介绍在Windows电脑中,下载.安装.部署并运行PostgreSQL与PostGIS数据库服务的方法.   PostgreSQL是一种功能强大的开源关系型数据库管理系统(RDBMS),以其稳 ...

  4. 剖析 Vue:最适合小白入手的前端框架

    @charset "UTF-8"; .markdown-body { line-height: 1.75; font-weight: 400; font-size: 15px; o ...

  5. Flutter内嵌H5页面与前端通信:实现无缝交互的技术浅析

    @charset "UTF-8"; .markdown-body { line-height: 1.75; font-weight: 400; font-size: 15px; o ...

  6. Seata源码—3.全局事务注解扫描器的初始化

    大纲 1.全局事务注解扫描器继承的父类与实现的接口 2.全局事务注解扫描器的核心变量 3.Spring容器初始化后初始化Seata客户端的源码 4.TM全局事务管理器客户端初始化的源码 5.TM组件的 ...

  7. 端到端自动驾驶系统实战指南:从Comma.ai架构到PyTorch部署

    引言:端到端自动驾驶的技术革命 在自动驾驶技术演进历程中,端到端(End-to-End)架构正引领新一轮技术革命.不同于传统分模块处理感知.规划.控制的方案,端到端系统通过深度神经网络直接建立传感器原 ...

  8. .NET外挂系列:1. harmony 基本原理和骨架分析

    一:背景 1. 讲故事 为什么要开这么一个系列,是因为他可以对 .NET SDK 中的方法进行外挂,这种技术对解决程序的一些疑难杂症特别有用,在.NET高级调试 领域下大显神威,在我的训练营里也是花了 ...

  9. 5 easybr指纹浏览器内存修改教程

    目的 navigator.deviceMemory可以暴露设备的物理内存和运行状态,被用于设备唯一性识别或判断设备等级. 通过伪造这类信息,可以增强防关联.防追踪能力. easybr指纹浏览器提供演示 ...

  10. 第一次blog作业

    1.前言  刚接触面向对象程序设计和开始学习Java编程语言的时候,确实觉得所有的一切都很困难,所有的一切都很陌生.面对全新的概念和编程方式,感觉自己像是进入了一个完全陌生的领域,需要从头开始探索.那 ...