一、VAE的具体结构

二、VAE的pytorch实现

1加载并规范化MNIST

import相关类:

from __future__ import print_function
import argparse
import torch
import torch.utils.data
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms

设置参数:

parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args) #Sets the seed for generating random numbers. And returns a torch._C.Generator object.
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)

输出结果:

Namespace(batch_size=128, cuda=True, epochs=10, log_interval=10, no_cuda=False, seed=1)

下载数据集到./data/目录下:

kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
trainset = datasets.MNIST('../data', train=True, download=True,transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(
trainset,
batch_size=args.batch_size, shuffle=True, **kwargs)
testset= datasets.MNIST('../data', train=False, transform=transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(
testset,
batch_size=args.batch_size, shuffle=True, **kwargs)
image, label = trainset[0]
print(len(trainset))
print(image.size())
image, label = testset[0]
print(len(testset))
print(image.size())

输出结果:

60000
torch.Size([1, 28, 28])
10000
torch.Size([1, 28, 28])

2定义VAE

首先我们介绍x.view方法:

x = torch.randn(4, 4)y = x.view(16)z = x.view(-1, 16)  # the size -1 is inferred from other dimensions
print(x)
print(y)
print(z)

输出结果:

 1.6154  1.1792  0.6450  1.2078
-0.4741 1.2145 0.8381 2.3532
0.2070 -0.9054 0.9262 0.6758
1.2613 0.5196 -1.7125 -0.0519
[torch.FloatTensor of size 4x4]
1.6154
1.1792
0.6450
1.2078
-0.4741
1.2145
0.8381
2.3532
0.2070
-0.9054
0.9262
0.6758
1.2613
0.5196
-1.7125
-0.0519
[torch.FloatTensor of size 16]
Columns 0 to 9
1.6154 1.1792 0.6450 1.2078 -0.4741 1.2145 0.8381 2.3532 0.2070 -0.9054 Columns 10 to 15
0.9262 0.6758 1.2613 0.5196 -1.7125 -0.0519
[torch.FloatTensor of size 1x16]

然后建立VAE模型

class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__() self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784) self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid() def encode(self, x):
h1 = self.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1) def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu) def decode(self, z):
h3 = self.relu(self.fc3(z))
return self.sigmoid(self.fc4(h3)) def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparametrize(mu, logvar)
return self.decode(z), mu, logvar model = VAE()
if args.cuda:
model.cuda()

3.定义一个损失函数


reconstruction_function = nn.BCELoss()
reconstruction_function.size_average = False def loss_function(recon_x, x, mu, logvar):
BCE = reconstruction_function(recon_x, x.view(-1, 784)) # see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5) return BCE + KLD optimizer = optim.Adam(model.parameters(), lr=1e-3)

4.在训练数据上训练神经网络

我们只需要对数据迭代器进行循环,并将输入反馈到网络并进行优化。

for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)

其中

def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data))) print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset))) def test(epoch):
model.eval()
test_loss = 0
for data, _ in test_loader:
if args.cuda:
data = data.cuda()
data = Variable(data, volatile=True)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0] test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))

Tips:

1.直接运行pytorch examples里的代码发现library not initialized at /pytorch/torch/lib/THC/THCGeneral.c错误

解决方案:sudo rm -r ~/.nv

2.该源码实现的论文为https://arxiv.org/pdf/1312.6114.pdf

pytorch实现VAE的更多相关文章

  1. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  2. Variational Auto-encoder(VAE)变分自编码器-Pytorch

    import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from ...

  3. pytorch实现DCGAN、pix2pix、DiscoGAN、CycleGAN、BEGAN以及VAE

    https://github.com/sunshineatnoon/Paper-Implementations

  4. Pytorch 细节记录

    1. PyTorch进行训练和测试时指定实例化的model模式为:train/eval eg: class VAE(nn.Module): def __init__(self): super(VAE, ...

  5. 【转载】 Pytorch 细节记录

    原文地址: https://www.cnblogs.com/king-lps/p/8570021.html ---------------------------------------------- ...

  6. (转)Awesome PyTorch List

    Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...

  7. (转) The Incredible PyTorch

    转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...

  8. pytorch实现autoencoder

    关于autoencoder的内容简介可以参考这一篇博客,可以说写的是十分详细了https://sherlockliao.github.io/2017/06/24/vae/ 盗图一张,自动编码器讲述的是 ...

  9. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

随机推荐

  1. hdu3713 Double Maze

    Problem Description Unlike single maze, double maze requires a common sequence of commands to solve ...

  2. Html5笔记之第八天

    HTML字符实体 显示结果 描述 实体名称 实体编号   空格     < 小于号 < < > 大于号 > > & 和号 & & " ...

  3. [知了堂学习笔记]_纯JS制作《飞机大战》游戏_第2讲(对象的实现及全局变量的定义)

    整体展示: 一.全局变量 /*===================玩家参数==========================*/ var myPlane; //英雄对象 var leftbtn = ...

  4. jquery选中radio或checkbox的正确姿势

    jquery选中radio或checkbox的正确姿势 Intro 前几天突然遇到一个问题,没有任何征兆的..,jquery 选中radio button单选框时,一直没有办法选中,后来查了许多资料, ...

  5. 【BUG】插入或者更新超过限制后写入数据库失败

      Error Code: 1064 - You have an error in your SQL syntax; check the manual that corresponds to your ...

  6. PHP字符串和数组

    php常用函数和数组 字符串替换 , 分割字符串(字符串转数组),  拼接数组的值(数组组转字符串) , 格式化输出  查找字符首次出现的位置 , 获取字符串长度 以一个数组作为key另一个数组作为v ...

  7. 把JavaScript代码改成ES6语法不完全指南

    目录 * 核心例子 * 修改成静态变量(const)或块级变量(let) * 开始修改 * 疑问解释(重复定义会发生什么) * 疑问解释(let的块级作用域是怎样的) * 疑问解释(const定义的变 ...

  8. Docker 集群环境实现方式

    Docker 集群环境实现的新方式 近几年来,Docker 作为一个开源的应用容器引擎,深受广大开发者的欢迎.随着 Docker 生态圈的不断建设,应用领域越来越广.云计算,大数据,移动技术的快速发展 ...

  9. sleep(强制等待)和implicitly_wait(隐式等待 )区别与理解---基于python

    我们在进行selenium页面自动化的测试的时候,由于需要等待目标页面的加载或由于网络或硬件配置导致的页面加载等待,经常会用到sleep,但是由于在不同场景下对于sleep时间的估计无法十分准确,导致 ...

  10. grunt之connect、watch

    先说下这两个插件配合的用处,简单的说,它们可以拯救你的F5.connect用于建立一个静态服务器,watch监听文件的修改并自动实时刷新浏览器的页面. 还是options走起. connect(V0. ...