概述


简单hdfs高可用架构图

  在hadoop2.x中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
    hadoop2.x官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里楼主使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode(我配了3个)。
    这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态。hadoop2.4以前的版本中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,2.4以后解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调。yarn的HA配置楼主会给出配置文件,受环境影响,这里就不搭建yarn的高可用性了。

主要步骤


  1. 备6台Linux机器
  2. 安装JDK、配置主机名、修改IP地址、关闭防火墙
  3. 配置SSH免登陆
  4. 安装zookeeper集群
  5. zookeeper、hadoop环境变量配置
  6. 核心配置文件修改
  7. 启动zookeeper集群
  8. 启动journalnode
  9. 格式化文件系统、格式化zk
  10. 启动hdfs、启动yarn

前期准备


集群规划

  

 主机名 IP 安装软件 进程
hadoop01 192.168.8.101 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
hadoop02 192.168.8.102 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
hadoop03 192.168.8.103 jdk、hadoop ResourceManager
hadoop04 192.168.8.104 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
hadoop05 192.168.8.105 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
hadoop06 192.168.8.106 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

Linux环境  

  1.由于楼主机器硬件环境的限制,这里只准备了6台centos7的系统。


  2.修改IP。如果跟楼主一样使用VM搭集群,请使用only-host模式。

vim /etc/sysconfig/network-scripts/ifcfg-ens3<!--这里不一定是ifcfg-ens3,取决于你的网卡信息-->

  

TYPE="Ethernet"
BOOTPROTO="static"
DEFROUTE="yes"
PEERDNS="yes"
PEERROUTES="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_PEERDNS="yes"
IPV6_PEERROUTES="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens33"
UUID="7f13c30b-0943-49e9-b25d-8aa8cab95e20"
DEVICE="ens33"
ONBOOT="yes"
IPADDR="192.168.8.101"<!--每台机器按照分配的IP进行配置-->
NETMASK="255.255.255.0"
GATEWAY="192.168.8.1"

  3.修改主机名和IP的映射关系

  vim /etc/host

 192.168.8.101 hadoop01
192.168.8.102 hadoop02
192.168.8.103 hadoop03
192.168.8.104 hadoop04
192.168.8.105 hadoop05
192.168.8.106 hadoop06

  4.关闭防火墙

 systemctl stop firewalld.service //停止firewall
systemctl disable firewalld.service //禁止firewall开机启动

  5.修改主机名

 hostnamectl set-hostname hadoop01
hostnamectl set-hostname hadoop02
hostnamectl set-hostname hadoop03
hostnamectl set-hostname hadoop04
hostnamectl set-hostname hadoop05
hostnamectl set-hostname hadoop06

  6.ssh免登陆

  生成公钥、私钥

  

ssh-keygen -t rsa //一直回车

  将公钥发送到其他机器

ssh-coyp-id hadoop01
ssh-coyp-id hadoop02
ssh-coyp-id hadoop03
ssh-coyp-id hadoop04
ssh-coyp-id hadoop05
ssh-coyp-id hadoop06

  7.安装JDK,配置环境变量

  hadoop01,hadoop02,hadoop03

 export JAVA_HOME=/usr/jdk1.7.0_60
export HADOOP_HOME=/home/hadoop/hadoop-2.7.3
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

  hadoop04,hadoop05,hadoop06(包含zookeeper)

 export JAVA_HOME=/usr/jdk1.7.0_60
export HADOOP_HOME=/home/hadoop/hadoop-2.7.3
export ZOOKEEPER_HOME=/home/hadoop/zookeeper-3.4.10
export PATH=$PATH:$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

zookeeper集群安装


  1.上传zk安装包
  上传到/home/hadoop
  2.解压  

tar -zxvf zookeeper-3.4.10.tar.gz

  3.配置(先在一台节点上配置)
    在conf目录,更改zoo_sample.cfg文件为zoo.cfg

 mv zoo_sample.cfg zoo.cfg

修改配置文件(zoo.cfg)

 dataDir=/home/hadoop/zookeeper-3.4.10/data
server.1=hadoop04:2888:3888
server.2=hadoop05:2888:3888
server.3=hadoop06:2888:3888

在(dataDir=/home/hadoop/zookeeper-3.4.10/data)创建一个myid文件,里面内容是server.N中的N(server.2里面内容为2)

  echo "5" > myid    

4.将配置好的zk拷贝到其他节点

 scp -r /home/hadoop/zookeeper-3.4.5/ hadoop05:/home/hadoop
scp -r /home/hadoop/zookeeper-3.4.5/ hadoop06:/home/hadoop

注意:在其他节点上一定要修改myid的内容
        在hadoop05应该将myid的内容改为2 (echo "6" > myid)
        在hadoop06应该将myid的内容改为3 (echo "7" > myid)

 5.启动集群
    分别启动hadoop04,hadoop05,hadoop06上的zookeeper

 zkServer.sh start

hadoop2.7.3集群安装


  1.解压

  tar -zxvf hadoop-2.7.3.tar.gz 

2.配置core-site.xml

 <configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/hadoop-2.7.3/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop04:2181,hadoop05:2181,hadoop06:2181</value>
</property>
</configuration>

  3.配置hdf-site.xml

 <configuration>
<!--指定hdfs的nameservice为ns1,必须和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>hadoop01:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>hadoop01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>hadoop02:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>hadoop02:50070</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop04:8485;hadoop05:8485;hadoop06:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>file:/home/hadoop/hadoop-2.7.3/journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,每个机制占用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>

  4.配置mapred-site.xml

 <configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

  5.配置yarn-site.xml

 <configuration>

 <!-- Site specific YARN configuration properties -->
<!-- 指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop03</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

  6.配置slaves

 hadoop04
hadoop05
hadoop06

  7.将配置好的hadoop拷贝到其他节点

scp -r /home/hadoop/hadoop-2.7.3 hadoop02:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop03:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop04:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop05:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop06:/home/hadoop

启动


  1.启动zookeeper集群(分别在hadoop04,hadoop05,hadoop06上启动zookeeper)

 zkServer.sh start

  2.查看zookeeper状态

 zkServer.sh status

  包含一个leader,二个follower

  

  3.启动journalnode(分别在hadoop04,hadoop05,hadoop06上执行)

hadoop-daemon.sh start journalnode

运行jps命令检验,hadoop04,hadoop05,hadoop06上多了JournalNode进程

  4.格式化HDFS

在hadoop01上执行命令:

 hdfs namenode -format

  检查是否成功看终端知否打印:

  

格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里楼主配置的是/home/hadoop/hadoop-2.7.3/tmp,然后将/home/hadoop/hadoop-2.7.3/tmp拷贝到ihadoop02的/home/hadoop/hadoop-2.7.3/下。

 scp -r tmp/ hadoop02:/hadoop/hadoop-2.7.3/

  5.格式化ZK(在hadoop01上执行即可)

  hdfs zkfc -formatZK

  效果如下(前面有点多截不下来,只截取了后面一部分):

  6.启动HDFS(在hadoop01上执行)

 start-dfs.sh

7.启动YARN(在hadoop03上执行)

 start-yarn.sh

验证


  到此,hadoop-2.7.3集群全部配置完毕,下面我们来验证:
  

  浏览器访问http://192.168.8.101:50070    NameNode 'hadoop01:9000' (active)
             http://192.168.8.102:50070   NameNode 'hadoop02:9000' (standby)

  浏览器访问resourceManager:http://192.168.8.103:8088

    

    我们可以模拟NameNode(active)宕机,来验证HDFS的HA是否有效,NameNode(active)宕机后,NameNode(standby)会转为active状态,这里楼主不在演示。

结语


  官网给出的文档还是比较详细的,楼主也是提取了官网的QJM解决方案来进行搭建。另外,yarn的HA搭建官网也给出了具体配置,有兴趣的同学可以试一试。

hadoop高可靠性HA集群的更多相关文章

  1. corosync+pacemaker实现高可用(HA)集群

    corosync+pacemaker实现高可用(HA)集群(一)     重要概念 在准备部署HA集群前,需要对其涉及的大量的概念有一个初步的了解,这样在实际部署配置时,才不至于不知所云 资源.服务与 ...

  2. heartbeat+nginx搭建高可用HA集群

    前言: HA即(high available)高可用,又被叫做双机热备,用于关键性业务.简单理解就是,有2台机器 A 和 B,正常是 A 提供服务,B 待命闲置,当 A 宕机或服务宕掉,会切换至B机器 ...

  3. 基于zookeeper的高可用Hadoop HA集群安装

    (1)hadoop2.7.1源码编译 http://aperise.iteye.com/blog/2246856 (2)hadoop2.7.1安装准备 http://aperise.iteye.com ...

  4. 大数据Hadoop的HA高可用架构集群部署

        1 概述 在Hadoop 2.0.0之前,一个Hadoop集群只有一个NameNode,那么NameNode就会存在单点故障的问题,幸运的是Hadoop 2.0.0之后解决了这个问题,即支持N ...

  5. 菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章

    菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章 cheungmine, 2014-10-26 在上一章中,我们准备好了计算机和软件.本章开始部署hadoop 高可用集群. 2 部署 ...

  6. 菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章

    菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章 cheungmine, 2014-10-25 0 引言 在生产环境上安装Hadoop高可用集群一直是一个需要极度耐心和体力的细致工作 ...

  7. hadoop HA集群搭建步骤

      NameNode DataNode Zookeeper ZKFC JournalNode ResourceManager NodeManager node1 √   √ √   √   node2 ...

  8. ZooKeeper学习之路 (九)利用ZooKeeper搭建Hadoop的HA集群

    Hadoop HA 原理概述 为什么会有 hadoop HA 机制呢? HA:High Available,高可用 在Hadoop 2.0之前,在HDFS 集群中NameNode 存在单点故障 (SP ...

  9. Hadoop HA集群的搭建

    HA 集群搭建的难度主要在于配置文件的编写, 心细,心细,心细! ha模式下,secondary namenode节点不存在... 集群部署节点角色的规划(7节点)------------------ ...

随机推荐

  1. Python之数据序列化(json、pickle、shelve)

    本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Py ...

  2. 对Vue.js $watch方法的理解

    博主最近对着vue.js的官方教程在自学vue.js,博主自幼愚钝,在教程中真的是好多点都不太理解,接下来要说的这个$watch方法就是其中一个不太理解的点了.咱们先来看一下对于$watch方法在vu ...

  3. js应用之实现图片切换效果

    数组的操作与应用 数组的定义 var 数组名=new Array(); //创建空数组 var 数组名=new Array(size);//创建指定数组长度的数组 var 数组名=new Array( ...

  4. 用async 解放你的大脑

    在js中,代码嵌套和代码回调非常常见,不仅编写麻烦而且异常反人类.让我等码农很是头痛 function () {     function () {         function () {     ...

  5. 这是对position讲解最通俗易懂的版本了。

    position 为了制作更多复杂的布局,我们需要讨论下 position 属性.它有一大堆的值,名字还都特抽象,别提有多难记了.让我们先一个个的过一遍,不过你最好还是把这页放到书签里. static ...

  6. Hive基础知识梳理

    Hive简介 Hive是什么 Hive是构建在Hadoop之上的数据仓库平台. Hive是一个SQL解析引擎,将SQL转译成MapReduce程序并在Hadoop上运行. Hive是HDFS的一个文件 ...

  7. css常用居中

    对一个已知大小的元素上下左右居中(已知大小了,直接margin也就行了): css如下:.parent{height:100px;width:100px;background:grey;positio ...

  8. 数据库CAST()函数和CONVERT()函数比较

    对简单类型转换,CAST()函数和CONVERT()函数的效果一致,只是语法不同.前者更易使用,而后者的优势是格式化时间和数值.在以下这几种情况,二者一样: 1-1.SELECT CONVERT(de ...

  9. IOS开发创建开发证书及发布App应用(六)——打包应用

    6.打包应用 如下图,生成之后点击下面红框的按钮,按时间排序,然后点最新的一次生成 从右侧生成日志中找到如下图红框标识的部分,找到 -output ,把下面浅蓝色选中,这是app生成的文件夹路径 点击 ...

  10. shiro使用教程

    一.shiro是什么 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.不仅可以在Web项目中使用,在普通的项目中也是可以使用的 二.shiro可以做什 ...