hadoop高可靠性HA集群
概述
简单hdfs高可用架构图
在hadoop2.x中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
hadoop2.x官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里楼主使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode(我配了3个)。
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态。hadoop2.4以前的版本中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,2.4以后解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调。yarn的HA配置楼主会给出配置文件,受环境影响,这里就不搭建yarn的高可用性了。
主要步骤
- 备6台Linux机器
- 安装JDK、配置主机名、修改IP地址、关闭防火墙
- 配置SSH免登陆
- 安装zookeeper集群
- zookeeper、hadoop环境变量配置
- 核心配置文件修改
- 启动zookeeper集群
- 启动journalnode
- 格式化文件系统、格式化zk
- 启动hdfs、启动yarn
前期准备
集群规划
主机名 | IP | 安装软件 | 进程 |
hadoop01 | 192.168.8.101 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
hadoop02 | 192.168.8.102 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
hadoop03 | 192.168.8.103 | jdk、hadoop | ResourceManager |
hadoop04 | 192.168.8.104 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
hadoop05 | 192.168.8.105 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
hadoop06 | 192.168.8.106 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
Linux环境
1.由于楼主机器硬件环境的限制,这里只准备了6台centos7的系统。
2.修改IP。如果跟楼主一样使用VM搭集群,请使用only-host模式。
vim /etc/sysconfig/network-scripts/ifcfg-ens3<!--这里不一定是ifcfg-ens3,取决于你的网卡信息-->
TYPE="Ethernet"
BOOTPROTO="static"
DEFROUTE="yes"
PEERDNS="yes"
PEERROUTES="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_PEERDNS="yes"
IPV6_PEERROUTES="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens33"
UUID="7f13c30b-0943-49e9-b25d-8aa8cab95e20"
DEVICE="ens33"
ONBOOT="yes"
IPADDR="192.168.8.101"<!--每台机器按照分配的IP进行配置-->
NETMASK="255.255.255.0"
GATEWAY="192.168.8.1"
3.修改主机名和IP的映射关系
vim /etc/host 192.168.8.101 hadoop01
192.168.8.102 hadoop02
192.168.8.103 hadoop03
192.168.8.104 hadoop04
192.168.8.105 hadoop05
192.168.8.106 hadoop06
4.关闭防火墙
systemctl stop firewalld.service //停止firewall
systemctl disable firewalld.service //禁止firewall开机启动
5.修改主机名
hostnamectl set-hostname hadoop01
hostnamectl set-hostname hadoop02
hostnamectl set-hostname hadoop03
hostnamectl set-hostname hadoop04
hostnamectl set-hostname hadoop05
hostnamectl set-hostname hadoop06
6.ssh免登陆
生成公钥、私钥
ssh-keygen -t rsa //一直回车
将公钥发送到其他机器
ssh-coyp-id hadoop01
ssh-coyp-id hadoop02
ssh-coyp-id hadoop03
ssh-coyp-id hadoop04
ssh-coyp-id hadoop05
ssh-coyp-id hadoop06
7.安装JDK,配置环境变量
hadoop01,hadoop02,hadoop03
export JAVA_HOME=/usr/jdk1.7.0_60
export HADOOP_HOME=/home/hadoop/hadoop-2.7.3
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
hadoop04,hadoop05,hadoop06(包含zookeeper)
export JAVA_HOME=/usr/jdk1.7.0_60
export HADOOP_HOME=/home/hadoop/hadoop-2.7.3
export ZOOKEEPER_HOME=/home/hadoop/zookeeper-3.4.10
export PATH=$PATH:$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
zookeeper集群安装
1.上传zk安装包
上传到/home/hadoop
2.解压
tar -zxvf zookeeper-3.4.10.tar.gz
3.配置(先在一台节点上配置)
在conf目录,更改zoo_sample.cfg文件为zoo.cfg
mv zoo_sample.cfg zoo.cfg
修改配置文件(zoo.cfg)
dataDir=/home/hadoop/zookeeper-3.4.10/data
server.1=hadoop04:2888:3888
server.2=hadoop05:2888:3888
server.3=hadoop06:2888:3888
在(dataDir=/home/hadoop/zookeeper-3.4.10/data)创建一个myid文件,里面内容是server.N中的N(server.2里面内容为2)
echo "5" > myid
4.将配置好的zk拷贝到其他节点
scp -r /home/hadoop/zookeeper-3.4.5/ hadoop05:/home/hadoop
scp -r /home/hadoop/zookeeper-3.4.5/ hadoop06:/home/hadoop
注意:在其他节点上一定要修改myid的内容
在hadoop05应该将myid的内容改为2 (echo "6" > myid)
在hadoop06应该将myid的内容改为3 (echo "7" > myid)
5.启动集群
分别启动hadoop04,hadoop05,hadoop06上的zookeeper
zkServer.sh start
hadoop2.7.3集群安装
1.解压
tar -zxvf hadoop-2.7.3.tar.gz
2.配置core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/hadoop-2.7.3/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop04:2181,hadoop05:2181,hadoop06:2181</value>
</property>
</configuration>
3.配置hdf-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,必须和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>hadoop01:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>hadoop01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>hadoop02:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>hadoop02:50070</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop04:8485;hadoop05:8485;hadoop06:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>file:/home/hadoop/hadoop-2.7.3/journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,每个机制占用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
4.配置mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
5.配置yarn-site.xml
<configuration> <!-- Site specific YARN configuration properties -->
<!-- 指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop03</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
6.配置slaves
hadoop04
hadoop05
hadoop06
7.将配置好的hadoop拷贝到其他节点
scp -r /home/hadoop/hadoop-2.7.3 hadoop02:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop03:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop04:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop05:/home/hadoop
scp -r /home/hadoop/hadoop-2.7.3 hadoop06:/home/hadoop
启动
1.启动zookeeper集群(分别在hadoop04,hadoop05,hadoop06上启动zookeeper)
zkServer.sh start
2.查看zookeeper状态
zkServer.sh status
包含一个leader,二个follower
3.启动journalnode(分别在hadoop04,hadoop05,hadoop06上执行)
hadoop-daemon.sh start journalnode
运行jps命令检验,hadoop04,hadoop05,hadoop06上多了JournalNode进程
4.格式化HDFS
在hadoop01上执行命令:
hdfs namenode -format
检查是否成功看终端知否打印:
格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里楼主配置的是/home/hadoop/hadoop-2.7.3/tmp,然后将/home/hadoop/hadoop-2.7.3/tmp拷贝到ihadoop02的/home/hadoop/hadoop-2.7.3/下。
scp -r tmp/ hadoop02:/hadoop/hadoop-2.7.3/
5.格式化ZK(在hadoop01上执行即可)
hdfs zkfc -formatZK
效果如下(前面有点多截不下来,只截取了后面一部分):
6.启动HDFS(在hadoop01上执行)
start-dfs.sh
7.启动YARN(在hadoop03上执行)
start-yarn.sh
验证
到此,hadoop-2.7.3集群全部配置完毕,下面我们来验证:
浏览器访问http://192.168.8.101:50070 NameNode 'hadoop01:9000' (active)
http://192.168.8.102:50070 NameNode 'hadoop02:9000' (standby)
浏览器访问resourceManager:http://192.168.8.103:8088
我们可以模拟NameNode(active)宕机,来验证HDFS的HA是否有效,NameNode(active)宕机后,NameNode(standby)会转为active状态,这里楼主不在演示。
结语
官网给出的文档还是比较详细的,楼主也是提取了官网的QJM解决方案来进行搭建。另外,yarn的HA搭建官网也给出了具体配置,有兴趣的同学可以试一试。
hadoop高可靠性HA集群的更多相关文章
- corosync+pacemaker实现高可用(HA)集群
corosync+pacemaker实现高可用(HA)集群(一) 重要概念 在准备部署HA集群前,需要对其涉及的大量的概念有一个初步的了解,这样在实际部署配置时,才不至于不知所云 资源.服务与 ...
- heartbeat+nginx搭建高可用HA集群
前言: HA即(high available)高可用,又被叫做双机热备,用于关键性业务.简单理解就是,有2台机器 A 和 B,正常是 A 提供服务,B 待命闲置,当 A 宕机或服务宕掉,会切换至B机器 ...
- 基于zookeeper的高可用Hadoop HA集群安装
(1)hadoop2.7.1源码编译 http://aperise.iteye.com/blog/2246856 (2)hadoop2.7.1安装准备 http://aperise.iteye.com ...
- 大数据Hadoop的HA高可用架构集群部署
1 概述 在Hadoop 2.0.0之前,一个Hadoop集群只有一个NameNode,那么NameNode就会存在单点故障的问题,幸运的是Hadoop 2.0.0之后解决了这个问题,即支持N ...
- 菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章
菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章 cheungmine, 2014-10-26 在上一章中,我们准备好了计算机和软件.本章开始部署hadoop 高可用集群. 2 部署 ...
- 菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章
菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章 cheungmine, 2014-10-25 0 引言 在生产环境上安装Hadoop高可用集群一直是一个需要极度耐心和体力的细致工作 ...
- hadoop HA集群搭建步骤
NameNode DataNode Zookeeper ZKFC JournalNode ResourceManager NodeManager node1 √ √ √ √ node2 ...
- ZooKeeper学习之路 (九)利用ZooKeeper搭建Hadoop的HA集群
Hadoop HA 原理概述 为什么会有 hadoop HA 机制呢? HA:High Available,高可用 在Hadoop 2.0之前,在HDFS 集群中NameNode 存在单点故障 (SP ...
- Hadoop HA集群的搭建
HA 集群搭建的难度主要在于配置文件的编写, 心细,心细,心细! ha模式下,secondary namenode节点不存在... 集群部署节点角色的规划(7节点)------------------ ...
随机推荐
- Python之数据序列化(json、pickle、shelve)
本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Py ...
- 对Vue.js $watch方法的理解
博主最近对着vue.js的官方教程在自学vue.js,博主自幼愚钝,在教程中真的是好多点都不太理解,接下来要说的这个$watch方法就是其中一个不太理解的点了.咱们先来看一下对于$watch方法在vu ...
- js应用之实现图片切换效果
数组的操作与应用 数组的定义 var 数组名=new Array(); //创建空数组 var 数组名=new Array(size);//创建指定数组长度的数组 var 数组名=new Array( ...
- 用async 解放你的大脑
在js中,代码嵌套和代码回调非常常见,不仅编写麻烦而且异常反人类.让我等码农很是头痛 function () { function () { function () { ...
- 这是对position讲解最通俗易懂的版本了。
position 为了制作更多复杂的布局,我们需要讨论下 position 属性.它有一大堆的值,名字还都特抽象,别提有多难记了.让我们先一个个的过一遍,不过你最好还是把这页放到书签里. static ...
- Hive基础知识梳理
Hive简介 Hive是什么 Hive是构建在Hadoop之上的数据仓库平台. Hive是一个SQL解析引擎,将SQL转译成MapReduce程序并在Hadoop上运行. Hive是HDFS的一个文件 ...
- css常用居中
对一个已知大小的元素上下左右居中(已知大小了,直接margin也就行了): css如下:.parent{height:100px;width:100px;background:grey;positio ...
- 数据库CAST()函数和CONVERT()函数比较
对简单类型转换,CAST()函数和CONVERT()函数的效果一致,只是语法不同.前者更易使用,而后者的优势是格式化时间和数值.在以下这几种情况,二者一样: 1-1.SELECT CONVERT(de ...
- IOS开发创建开发证书及发布App应用(六)——打包应用
6.打包应用 如下图,生成之后点击下面红框的按钮,按时间排序,然后点最新的一次生成 从右侧生成日志中找到如下图红框标识的部分,找到 -output ,把下面浅蓝色选中,这是app生成的文件夹路径 点击 ...
- shiro使用教程
一.shiro是什么 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.不仅可以在Web项目中使用,在普通的项目中也是可以使用的 二.shiro可以做什 ...