Jump Game

Problem statement:

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example:
A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

Analysis:

There are two solutions for this problem, one is greedy, another is dynamic programming. The main difference is the direction.

Solution one: 

Greedy is the best solution for this problem, it is always forwarding(AC) O(n).

  • Loop the whole array
  • Keep a right most position where I can get, update it at each index.
  • if right most position is always greater than current index or it is already exceed the last position of array, return true since we can get the last position
  • Once current index is greater than right most position, return false, since there is already no way to get there.

The code is as following:

 class Solution {
public:
bool canJump(vector<int>& nums) {
if(nums.empty()){
return false;
} // keep a indicator for current right most position we can reach
int right_most = ; // loop to enumrate all elements
for(int ix = ; ix < nums.size(); ix++){
// if current element already exceed the right most position
// return false
if(right_most < ix){
return false;
} else {
// we already could reache the last element
if(ix + nums[ix] >= nums.size() - ){
return true;
} else {
// otherwise, update the right most position
right_most = max(ix + nums[ix], right_most);
}
}
}
return false;
}
};

Solution two(NOT AC):

Dynamic programming O(n*n)

For dynamic programming, we looks back, for each element, we enumerate all the element whose index is lower than it, and check if it is reachable.

 class Solution {
public:
// dynamic programming solution
bool canJump(vector<int>& nums) {
if (nums.empty()) {
return false;
}
int size = nums.size();
vector<bool> true_table(size, false);
true_table[] = true;
for(int i = ; i < nums.size(); i++){
for(int j = ; j < i; j++){
if(true_table[j] && nums[j] + j >= i){
true_table[i] = true;
break;
}
}
}
return true_table[size - ];
}
};

--------------------------------- divide line --------------------------------------------

Jump Game ii

Problem Statement:

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

Note: You can assume that you can always reach the last index.

Analysis:

The main difference between jump game i && ii is that we should keep a minimum jump array for each element and update it for each element.

Solution one: Greedy

This is the accepted solution.

Solution two: Dynamic programming(NOT AC)

 class Solution {
public:
int jump(vector<int>& nums) {
if(nums.empty()){
return ;
}
int size = nums.size();
vector<bool> can_jump(size, false);
vector<int> min_jump(size, INT_MAX);
// initialize start status
can_jump[] = true;
min_jump[] = ;
// dynamic programming
for(int i = ; i < nums.size(); i++){
for(int j = ; j < i; j++){
if(can_jump[j] && nums[j] + j >= i){
can_jump[i] = true;
min_jump[i] = min(min_jump[i], min_jump[j] + );
}
}
}
// return end status
return min_jump[size - ];
}
};

Solution two: Greedy(AC)

we keep two variables, the first one is the most right position in current jump, the second one is the right most position in next jump.

Just one loop to get the final solution:

 class Solution {
public:
int jump(vector<int>& nums) {
// initialize
if(nums.size() < ){
return ;
}
// variables
int cur_jump_right_most = nums[];
int next_jump_right_most = ;
int min_jump = ;
if(cur_jump_right_most >= nums.size() - ){
return min_jump;
}
// O(n)
for(int ix = ; ix < nums.size(); ix++){
if(ix > cur_jump_right_most){
// at boundary
// update the cur_jump_right_most position before next_jump_right_most
cur_jump_right_most = next_jump_right_most;
min_jump++;
}
next_jump_right_most = max(next_jump_right_most, nums[ix] + ix);
if(next_jump_right_most >= nums.size() - ){
return ++min_jump;
}
}
return min_jump;
}
};

55 Jump Game i && 45 Jump Game ii的更多相关文章

  1. leetcode 55. Jump Game、45. Jump Game II(贪心)

    55. Jump Game 第一种方法: 只要找到一个方式可以到达,那当前位置就是可以到达的,所以可以break class Solution { public: bool canJump(vecto ...

  2. leetcode 55. 跳跃游戏 及 45. 跳跃游戏 II

    55. 跳跃游戏 问题描述 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1, ...

  3. Leetcode 55. Jump Game & 45. Jump Game II

    55. Jump Game Description Given an array of non-negative integers, you are initially positioned at t ...

  4. [Leetcode][Python]45: Jump Game II

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 45: Jump Game IIhttps://oj.leetcode.com ...

  5. Leetcode 45. Jump Game II(贪心)

    45. Jump Game II 题目链接:https://leetcode.com/problems/jump-game-ii/ Description: Given an array of non ...

  6. LeetCode 45. 跳跃游戏 II | Python

    45. 跳跃游戏 II 题目来源:https://leetcode-cn.com/problems/jump-game-ii 题目 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素 ...

  7. Java实现 LeetCode 45 跳跃游戏 II(二)

    45. 跳跃游戏 II 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [ ...

  8. [leetcode] 45. 跳跃游戏 II(Java)(动态规划)

    45. 跳跃游戏 II 动态规划 此题可以倒着想. 看示例: [2,3,1,1,4] 我们从后往前推,对于第4个数1,跳一次 对于第3个数1,显然只能跳到第4个数上,那么从第3个数开始跳到最后需要两次 ...

  9. [LeetCode#55, 45]Jump Game, Jump Game II

    The problem: Given an array of non-negative integers, you are initially positioned at the first inde ...

随机推荐

  1. 知问前端——html+jq+jq_ui+ajax

    **************************************************************************************************** ...

  2. 获取JVM的dump文件

    获取JVM的dump文件的两种方式 1. JVM启动时增加两个参数: #出现 OOME 时生成堆 dump: -XX:+HeapDumpOnOutOfMemoryError #生成堆文件地址: -XX ...

  3. 任务调度之持久化(基于Quartz.net)

    上一篇我们了解了任务调度及他的远端管理方式,传送门:任务调度及远端管理(基于Quartz.net) 这篇我们要完成任务调度的持久化功能,即新增修改删除之类的功能,这必须得要有的,不然都不知道后台都有什 ...

  4. underscore.js,jquery.js源码阅读

    (function() { // Baseline setup // -------------- // Establish the root object, `window` in the brow ...

  5. jquery、js获取页面高度宽度等

    jquery获取页面高度宽度 //获取浏览器显示区域(可视区域)的高度 : $(window).height(); //获取浏览器显示区域(可视区域)的宽度 : $(window).width(); ...

  6. 踩坑实录 使用 cardview 时报错 error: No resource identifier found for attribute 'cardCornerRadius' in package 'com.xxxxx.xxx'

    在项目中引用 cardview 卡片布局,编译时 Android Studio 报出下面图片中红框标记的错误: 出现这种情况的原因在于没有导入 cardview 卡片布局相应的依赖包,因此我们需要在 ...

  7. TCP/IP、HTTP、Socke、UDP的区别

    一.TCP/IP.Http.Socket的区别 [http://jingyan.baidu.com/article/08b6a591e07ecc14a80922f1.html](http://jing ...

  8. jquery处理checkbox(复选框)是否被选中

    现在如果一个复选框被选中,是用checked=true,checked="checked"也行 要用prop代替attr会更好,虽然在jQuery1.6之前版本的attr()方法能 ...

  9. MySQL意外关闭, 导致软件崩溃而无法启动的解决办法

    在初次搭建XAMPP,Apache和MySQL都可以正常启动,一旦关机重启XAMPP时,发现Apache可以正常启动:而MySQL却不能正常运行,会碰到 Error: MySQL shutdown u ...

  10. toastr.js插件用法

    toastr.js插件用法 toastr.js是一个基于jQuery的非阻塞通知的JavaScript库.toastr.js可以设定四种通知模式:成功.出错.警告.提示.提示窗口的位置.动画效果等都可 ...