决策树模型

  1. 选择最好的特征和特征的值进行数据集划分
  2. 根据上面获得的结果创建决策树
  3. 根据测试数据进行剪枝(默认没有数据的树分支被剪掉)
  4. 对输入进行预测

模型树

import numpy as np

def loadDataSet(fileName):      #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
with open(fileName) as fr:
for line in fr.readlines():
curLine = line.strip().split('\t')
# fltLine = map(float, curLine) #map all elements to float()
fltLine = [float(i) for i in curLine]
dataMat.append(fltLine)
# dataMat = [map(float,line.strip().split('\t')) for line in fr.readlines()]
return np.mat(dataMat) # dataSet为矩阵,feature 为特征索引,value为值
def binSplitDataSet(dataSet, feature, value):
mat0 = dataSet[np.nonzero(dataSet[:,feature] > value)[0],:]
mat1 = dataSet[np.nonzero(dataSet[:,feature] <= value)[0],:]
return np.mat(mat0),np.mat(mat1) def regLeaf(dataSet):#returns the value used for each leaf
return np.mean(dataSet[:,-1]) def regErr(dataSet): # 输出的平方误差和
return np.var(dataSet[:,-1]) * np.shape(dataSet)[0] # ops[0]误差下降值,小于此值不再切分
# ops[1] 切分的最小样本数,小于此值不再切分
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
tolS = ops[0]; tolN = ops[1]
#if all the target variables are the same value: quit and return value
# print(set(dataSet[:,-1].T.tolist()[0])) if len(set(dataSet[:,-1].T.tolist()[0])) == 1: #exit cond 1
# if len(set(dataSet[:, -1])) == 1: # exit cond 1
return None, leafType(dataSet) # 返回None,输出值
m,n = np.shape(dataSet)
#the choice of the best feature is driven by Reduction in RSS error from mean
S = errType(dataSet)
bestS = np.inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
for splitVal in set(dataSet[:,featIndex].T.tolist()[0]):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
continue # 结束本次循环,小于最小切分样本数,不再切分
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
#if the decrease (S-bestS) is less than a threshold don't do the split
if (S - bestS) < tolS: # 切分前的和切分后的误差小于给定值,不再切分
return None, leafType(dataSet) #exit cond 2
# mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue) # ?按照最优特征和值切分
# if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN): #exit cond 3
# return None, leafType(dataSet)
return bestIndex,bestValue#returns the best feature to split on
#and the value used for that split def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
if feat == None: return val #if the splitting hit a stop condition return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree def isTree(obj):
return (type(obj).__name__ == 'dict') def getMean(tree):
if isTree(tree['right']): tree['right'] = getMean(tree['right'])
if isTree(tree['left']): tree['left'] = getMean(tree['left'])
return (tree['left'] + tree['right']) / 2.0 def prune(tree, testData):
if np.shape(testData)[0] == 0: return getMean(
tree) # if we have no test data collapse the tree
if (isTree(tree['right']) or isTree(
tree['left'])): # if the branches are not trees try to prune them
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
if isTree(tree['right']): tree['right'] = prune(tree['right'], rSet)
# if they are now both leafs, see if we can merge them
if not isTree(tree['left']) and not isTree(tree['right']):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
errorNoMerge = sum(np.power(lSet[:, -1] - tree['left'], 2)) + \
sum(np.power(rSet[:, -1] - tree['right'], 2))
treeMean = (tree['left'] + tree['right']) / 2.0
errorMerge = sum(np.power(testData[:, -1] - treeMean, 2))
if errorMerge < errorNoMerge:
print("merging")
return treeMean
else:
return tree
else:
return tree # 模型树代码--未测试
def linearSolve(dataSet): #helper function used in two places
m,n = np.shape(dataSet)
X = np.mat(np.ones((m,n))); Y = np.mat(np.ones((m,1)))#create a copy of
# data with 1
# in 0th postion
X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]#and strip out Y
xTx = X.T*X
if np.linalg.det(xTx) == 0.0:
raise NameError('This matrix is singular, cannot do inverse,\n\
try increasing the second value of ops')
ws = xTx.I * (X.T * Y)
return ws,X,Y def regTreeEval(model, inDat):
return float(model) def modelTreeEval(model, inDat):
n = np.shape(inDat)[1]
X = np.mat(np.ones((1, n + 1)))
X[:, 1:n + 1] = inDat
return float(X * model) def treeForeCast(tree, inData, modelEval=regTreeEval):
if not isTree(tree): return modelEval(tree, inData)
if inData[tree['spInd']] > tree['spVal']:
if isTree(tree['left']):
return treeForeCast(tree['left'], inData, modelEval)
else:
return modelEval(tree['left'], inData)
else:
if isTree(tree['right']):
return treeForeCast(tree['right'], inData, modelEval)
else:
return modelEval(tree['right'], inData) def createForeCast(tree, testData, modelEval=regTreeEval):
m = len(testData)
yHat = np.mat(np.zeros((m, 1)))
for i in range(m):
yHat[i, 0] = treeForeCast(tree, np.mat(testData[i]), modelEval)
return yHat if __name__ == '__main__':
# mat0, mat1 = binSplitDataSet(np.mat(np.eye(4)),1,0.5) # 二分测试
dataMat = loadDataSet('ex00.txt') # 构建数测试
myTree = createTree(dataMat)
print(myTree) dataMat2 = loadDataSet('ex0.txt')
myTree2 = createTree(dataMat2)
print(myTree2) dataMat31 = loadDataSet('ex2.txt') # 剪枝测试
dataMat32 = loadDataSet('ex2test.txt')
myTree31 = createTree(dataMat31)
retTree = prune(myTree31, dataMat32)
print(myTree31)
print(retTree)

决策树CART回归树——算法实现的更多相关文章

  1. 机器学习实战---决策树CART回归树实现

    机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...

  2. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  3. CART回归树

    决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART回归树模型表达式: 其中,数据空间被划分为R1~Rm单元,每个单元有一个固定的输出值Cm.这样可以计算模型输 ...

  4. 分类回归树(CART)

    概要 本部分介绍 CART,是一种非常重要的机器学习算法.   基本原理   CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既 ...

  5. 决策树--CART树详解

    1.CART简介 CART是一棵二叉树,每一次分裂会产生两个子节点.CART树分为分类树和回归树. 分类树主要针对目标标量为分类变量,比如预测一个动物是否是哺乳动物. 回归树针对目标变量为连续值的情况 ...

  6. 决策树分类回归,ID3,c4.5,CART,及其Python代码

    决策树模型 内部节点表示一个特征或者属性,叶子结点表示一个类.决策树工作时,从根节点开始,对实例的每个特征进行测试,根据测试结果,将实例分配到其子节点中,这时的每一个子节点对应着特征的一个取值,如此递 ...

  7. CART(分类回归树)

    1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常 ...

  8. 【机器学习】迭代决策树GBRT(渐进梯度回归树)

    一.决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF. ...

  9. 回归树(Regression Tree)

    目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中 ...

随机推荐

  1. java多态转型II

    1 package face_09; 2 3 /* 4 * 毕老师和毕姥爷的故事. 5 */ 6 class 毕姥爷 { 7 void 讲课() { 8 System.out.println(&quo ...

  2. HTML 基础1

    HTML 超文本标记语言 文件后缀html,htm 标签成对出现:开始标签--结束标签 元素内容位于开始标签--结束标签之间(可以有空内容) 空元素<a/> 大小写不敏感 元素,属性 &l ...

  3. ajaxl利用json 传送数据的 三种提交方式?

    一.在servlet类中添加几个javabean对象,放置数据. package com.aaa.servlet; import java.io.IOException; import java.ut ...

  4. Abp 审计模块源码解读

    Abp 审计模块源码解读 Abp 框架为我们自带了审计日志功能,审计日志可以方便地查看每次请求接口所耗的时间,能够帮助我们快速定位到某些性能有问题的接口.除此之外,审计日志信息还包含有每次调用接口时客 ...

  5. Java Calendar类的使用总结【转】

    感谢!原文地址:https://www.cnblogs.com/huangminwen/p/6041168.html Java Calendar类的使用总结 在实际项目当中,我们经常会涉及到对时间的处 ...

  6. UDP数据包最大传输长度

    概念以太网(Ethernet)数据帧的长度必须在46-1500字节之间,这是由以太网的物理特性决定的.这个1500字节被称为链路层的MTU(最大传输单元). 但这并不是指链路层的长度被限制在1500字 ...

  7. axios取消接口请求

    axios取消请求 这里就是分析一下接口请求需要被取消时的一些操作 因为我是用vue写的项目,所以标配用的是axios,怎么在axios中取消已经发送的请求呢? 1.在这之前我们还是先介绍一下原生js ...

  8. js正则表达式 (.+)与(.+?)

    (.+)默认是贪婪匹配 (.+?)为惰性匹配 疑问号让.+的搜索模式从贪婪模式变成惰性模式. var str = 'aaa<div style="font-color:red;&quo ...

  9. hgame-week3-web-wp

    hgame第三周(web ak) 1.SecurityCenter 先看看hint(**vendor是第三方库和插件放置的文件夹,一般来源于composer的安装) 找到了使用的twig模板,应该是t ...

  10. .NET6: 开发基于WPF的摩登三维工业软件 (2)

    在<.NET6: 开发基于WPF的摩登三维工业软件 (1)>我们创建了一个"毛坯"界面,距离摩登还差一段距离.本文将对上一阶段的成果进行深化,实现当下流行的暗黑风格UI ...