「YNOI2016」自己的发明

不换根

基本的莫队吧...

子树直接转到dfs序上。

其余部分可以见 「SNOI2017」一个简单的询问

换根

根root,查询x,分3种:

  1. root不在x子树内,按照原来dfs序区间即可
  2. root在x子树内且root!=x,那么就是整个序列除掉H(root的祖先,且为x儿子)对应的dfs序区间
  3. root=x

直接将序列扩展就可以了,常数共\(8 \sqrt 2\)。

优化

若H对应区间为\([l,r]\)时,那么答案为\(cnt[1,l-1] + cnt[r+1,n]=(cnt[1,n]-cnt[l,r])\),再乘上另一个区间。

那么可以预处理出\([1,x]\)与\([1,n]\)的答案。

这样每个询问只需要做一次\([l,r]\)和\([l1,r1]\)的查询了,常数4。

但是,实际上不没有快多少...


对2e6个询问排序,复杂度极高。

因此,可以用vector存每个左端点块对应询问,再排序。

效果明显(!


倍增过程可以去掉,每个点用vector存儿子dfn序,若将子树中某点跳到该点的某个儿子,可以在该点直接二分一下。

只快了一点...

#include <bits/stdc++.h>
#define rep(q, a, b) for (int q = a, q##_end_ = b; q <= q##_end_; ++q)
#define dep(q, a, b) for (int q = a, q##_end_ = b; q >= q##_end_; --q)
#define mem(a, b) memset(a, b, sizeof a)
#define debug(a) cerr << #a << ' ' << a << "___" << endl
using namespace std;
bool cur1;
char buf[10000000], *p1 = buf, *p2 = buf;
#define Getchar() p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 10000000, stdin), p1 == p2) ? EOF : *p1++
void in(int &r) {
static char c;
r = 0;
while (c = Getchar(), c < 48)
;
do
r = (r << 1) + (r << 3) + (c ^ 48);
while (c = Getchar(), c > 47);
} const int mn = 100005;
const int mm = 500005;
int K, n, m, vl[mn], val[mn];
int head[mn], ne[mn << 1], to[mn << 1], cnt2;
#define link(a, b) link_edge(a, b), link_edge(b, a)
#define link_edge(a, b) to[++cnt2] = b, ne[cnt2] = head[a], head[a] = cnt2
#define travel(x) for (int q(head[x]); q; q = ne[q])
int ind, dfn_l[mn], dfn_r[mn];
vector<int> son[mn];
int mp[mn];
void dfs(int f, int x) {
++ind, mp[ind]=x,val[ind] = vl[x], dfn_l[x] = ind;
travel(x) if (to[q] != f) dfs(x, to[q]),son[x].push_back(dfn_l[to[q]]);
dfn_r[x] = ind;
}
int get_high(int x, int v) {
int l=0,r=(int)son[x].size()-1,ans=0;
while(l<=r){
int mid=l+r>>1;
if(son[x][mid]>v)r=mid-1;
else l=mid+1,ans=mid;
}
return mp[son[x][ans]];
}
long long ans[mm];
struct node {
int l, r, id;
inline bool operator<(const node &A) const { return r < A.r; }
};
inline bool cmp(node a, node b) { return a.r > b.r; }
vector<node> an[800];
int cnt[mn], cnt1[mn];
bool mark[mm];
long long mid_ans, mid[mn];
void init() {
dfs(0, 1); sort(mid + 1, mid + n + 1);
rep(q, 1, n) val[q] = lower_bound(mid + 1, mid + n + 1, val[q]) - mid; rep(q, 1, n)++ cnt[val[q]];
rep(q, 1, n) mid[q] = mid[q - 1] + cnt[val[q]];
rep(q, 1, n)-- cnt[val[q]];
}
int find(int rt, int x) {
if (dfn_l[rt] >= dfn_l[x] && dfn_l[rt] <= dfn_r[x])
return get_high(x, dfn_l[rt]);
return 0;
}
bool cur2;
int main() {
// cerr<<(&cur2-&cur1)/1024.0/1024<<endl;
int td, l, r, l1, r1;
in(n), in(m);
rep(q, 1, n) in(vl[q]), mid[q] = vl[q];
rep(q, 2, n) in(l), in(r), link(l, r);
init();
K = n / sqrt(m)*1.2 + 1;
int rt = 1;
rep(q, 1, m) {
in(td);
if (td == 1)
in(rt);
else {
mark[q] = 1;
in(l), in(l1);
if (rt == l || rt == l1) {
if (rt == l1)
swap(l, l1);
if (rt == l1)
ans[q] = mid[n];
else {
int at = find(rt, l1);
if (at)
ans[q] = mid[n] - (mid[dfn_r[at]] - mid[dfn_l[at] - 1]);
else
ans[q] = mid[dfn_r[l1]] - mid[dfn_l[l1] - 1];
}
} else {
int at = find(rt, l), at1 = find(rt, l1);
if (!at)
swap(at, at1), swap(l, l1);
td = 1;
if (at && !at1)
ans[q] = mid[dfn_r[l1]] - mid[dfn_l[l1] - 1], td = -1, l = at;
else if (at1)
ans[q] = mid[n] - (mid[dfn_r[at]] - mid[dfn_l[at] - 1]) -
(mid[dfn_r[at1]] - mid[dfn_l[at1] - 1]),
l = at, l1 = at1;
r = dfn_r[l], l = dfn_l[l];
r1 = dfn_r[l1], l1 = dfn_l[l1];
an[r / K].push_back({ r, r1, q * td });
if (l > 1) {
an[min(r1, l - 1) / K].push_back({ min(r1, (l - 1)), max(r1, (l - 1)), -q * td });
if (l1 > 1)
an[min(l - 1, l1 - 1) / K].push_back(
{ min(l - 1, l1 - 1), max(l - 1, l1 - 1), q * td });
}
if (l1 > 1)
an[min(r, l1 - 1) / K].push_back({ min(r, l1 - 1), max(r, l1 - 1), -q * td });
}
}
}
l = 0, r = 0;
rep(q, 0, n / K) {
if (q & 1)
sort(an[q].begin(), an[q].end(), cmp);
else
sort(an[q].begin(), an[q].end());
rep(w, 0, (int)an[q].size() - 1) {
l1 = an[q][w].l, r1 = an[q][w].r;
while (l > l1) mid_ans -= cnt1[val[l]], --cnt[val[l--]];
while (r < r1) mid_ans += cnt[val[++r]], ++cnt1[val[r]];
while (l < l1) mid_ans += cnt1[val[++l]], ++cnt[val[l]];
while (r > r1) mid_ans -= cnt[val[r]], --cnt1[val[r--]];
an[q][w].id < 0 ? ans[-an[q][w].id] -= mid_ans : ans[an[q][w].id] += mid_ans;
}
}
rep(q, 1, m) if (mark[q]) printf("%lld\n", ans[q]);
return 0;
}

「YNOI2016」自己的发明的更多相关文章

  1. loj #6201. 「YNOI2016」掉进兔子洞

    #6201. 「YNOI2016」掉进兔子洞 您正在打galgame,然后突然发现您今天太颓了,于是想写个数据结构题练练手: 给出一个长为 nnn 的序列 aaa. 有 mmm 个询问,每次询问三个区 ...

  2. loj #2037. 「SHOI2015」脑洞治疗仪

    #2037. 「SHOI2015」脑洞治疗仪   题目描述 曾经发明了自动刷题机的发明家 SHTSC 又公开了他的新发明:脑洞治疗仪——一种可以治疗他因为发明而日益增大的脑洞的神秘装置. 为了简单起见 ...

  3. LibreOJ #2036. 「SHOI2015」自动刷题机

    #2036. 「SHOI2015」自动刷题机 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 曾经发明了信号增幅仪的发明家 SHTSC 又公开 ...

  4. 每个程序员都可以「懂」一点 Linux

    提到 Linux,作为程序员来说一定都不陌生.但如果说到「懂」Linux,可能就没有那么多人有把握了.到底用 Linux 离懂 Linux 有多远?如果决定学习 Linux,应该怎么开始?要学到什么程 ...

  5. 「MoreThanJava」计算机发展史—从织布机到IBM

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  6. 「MoreThanJava」一文了解二进制和CPU工作原理

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  7. 「MoreThanJava」机器指令到汇编再到高级编程语言

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  8. 「MoreThanJava」Day2:变量、数据类型和运算符

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  9. 「MoreThanJava」Day 4:面向对象基础

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

随机推荐

  1. 数据结构作业——P53算法设计题(6):设计一个算法,通过一趟遍历确定长度为n的单链表中值最大的结点

    思路: 设单链表首个元素为最大值max 通过遍历元素,与最大值max作比较,将较大值附给max 输出最大值max 算法: /* *title:P53页程序设计第6题 *writer:weiyuexin ...

  2. 后缀数组【原理+python代码】

    后缀数组 参考:https://blog.csdn.net/a1035719430/article/details/80217267 https://blog.csdn.net/YxuanwKeith ...

  3. 昆泰CH7511B方案|EDP转LVDS资料|CS5211pin to pin 替代CH7511B电路设计

    Chrontel的CH7511B是一种低成本.低功耗的半导体器件,它将嵌入式DisplayPort信号转换为LVDS(低压差分信号).这款创新的DisplayPort接收机带有集成LVDS发射机,专为 ...

  4. ProtoBuf3语法指南(Protocol Buffers)_下

    0.说明 ProtoBuf3语法指南, 又称为proto3, 是谷歌的Protocol Buffers第3个版本. 本文基于官方英文版本翻译, 加上了自己的理解少量修改, 一共分为上下两部分. 1.A ...

  5. Shell自动上传下载文件到SFTP服务器

    1.说明 本文提供一个Shell脚本, 可以自动连接到SFTP服务器, 然后上传或者下载指定的文件, 进而可以使用Linux的corntab命令, 定时执行脚本上传下载文件, 实现文件的同步或者备份功 ...

  6. Xstart远程连接Linux图形用户界面

    目标: 在自己的Windows桌面打开Linux的firefox浏览器 工具: Windows: Xmanager的Xstart工具 Linux: xterm,firefox 说明: 使用Xstart ...

  7. PDF的信息提取的问题

    PDF对企业应用来说是刚需.   然而PDF显然不是一种对机器友好的格式,它只是对人类友好,就是说方便阅读打印,但让程序去提取其中的内容却很难.下面简单说说为什么是这样.   以前还读书的时候(20+ ...

  8. Docker_容器(container)使用(4)

    参数说明 -i: 交互式操作. -t: 终端. -d: 指定容器运行模式. --name:指定容器的NAMES字段名称,不指定则随机生成名称 --restart:容器启动策略.默认为no,常用为alw ...

  9. js 模块化 -- export 时 一个默认和多个默认的写法

    js文件 只有一个  food 类,一般写 export {food} 或者 export {food as default} 那么如果有多个呢? 这样 export {food, food2} 或者 ...

  10. Module 4 - Azure SQL

    1)     Migrate AdventureWorks database from SQL Server instance to Azure SQL using DMA.2)     Update ...