<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="content-type" content="text/html" />
<meta name="keywords" content="不用临时变量进行两个值的变换" />
<meta name="description" content="不使用临时变量进行两值的变换" />
<meta name="author" content="KG" />
<title>不是用临时变量,进行两个值的交换</title>
<link rel="shortcut icon" href="favicon.icon" />
</head>
<body>
<canvas></canvas>
<script>
// 不用临时变量进行两个值的变换
function swap(a, b) {
a = a + b;
b = a - b;
a = a - b;
console.log(a, b)
}
swap(4, 5); // 斐波那契数列的获取,长度为11个;
function fiboArr(len) {
let fiboArr = [];
for (var i = 0; i < len; i++) {
if (i <= 1) {
fiboArr.push(i);
} else {
fiboArr.push(fiboArr[i - 1] + fiboArr[i - 2]);
}
}
return fiboArr;
}
console.log(fiboArr(11)); // 斐波那契曲线
let canvas = document.getElementsByTagName('canvas')[0]
canvas.width = 600
canvas.height = 480
let coor = {
x: 300,
y: 240,
}
//先取背景图中的中间点作为一开始的圆点 let ctx = canvas.getContext('2d')
//获取该canvas的2D绘图环境对象 /*
绘制曲线方法
@param prevR 这是斐波那契数列中前一位的数值,也就是上一截曲线的半径
@param n 这是斐波那契数列中的下标
@param r 这是斐波那契数列当前下标的值,也就是将画曲线的半径
*/ /*圆心变化规律
ctx.arc(300, 240, 5, Math.PI, 0.5 * Math.PI, true);//1
ctx.arc(300, 235, 10, Math.PI * 0.5, 0, true);//2
ctx.arc(295, 235, 15, 0, Math.PI * 1.5, true);//3
ctx.arc(295, 245, 25, Math.PI * 1.5, Math.PI, true);//4
ctx.arc(310, 245, 40, Math.PI, Math.PI * 0.5, true);
ctx.arc(310, 220, 65, Math.PI * 0.5, 0, true);
ctx.arc(270, 220, 105, 0, Math.PI * 1.5, true);
ctx.arc(270, 285, 170, Math.PI * 1.5, Math.PI, true);
*/ function draw(prevR, n, r) {
let radius = r * 5
//五倍半径画,不然太小了 let startAngle = Math.PI
let endAngle = Math.PI * 0.5
//每个半径只画1/4个圆,所以开始角度和结束角度刚好相差 1/4 * PI let anticlockwise = true
//设置为逆时针方向画 //改变圆点坐标、开始角度和结束角度
//第三个元素的圆点坐标、开始角度和结束角度上面已经给出,所以从第四个元素开始改变圆点坐标、开始角度和结束角度,也就是从n > 2开始
if (n > 2) {
//下面坐标的改变可以参考上面的图和直接用canvas画的代码。
switch (n % 4) {
case 0:
coor.x = coor.x + (5 * prevR) - radius
startAngle = 0
endAngle = Math.PI * 1.5
break;
case 1:
coor.y = coor.y - (5 * prevR) + radius
startAngle = Math.PI * 1.5
endAngle = Math.PI
break;
case 2:
coor.x = coor.x - (5 * prevR) + radius
startAngle = Math.PI
endAngle = Math.PI * 0.5
break;
case 3:
coor.y = coor.y + (5 * prevR) - radius
startAngle = Math.PI * 0.5
endAngle = 0
break;
}
}
ctx.beginPath();
ctx.arc(coor.x, coor.y, radius, startAngle, endAngle, anticlockwise);
ctx.lineWidth = 1;
ctx.strokeStyle = '#000';
ctx.stroke();
}
//获取斐波那契数列
function getFibonacci(n) {
let arr = []
let i = 0
while (i < n) {
if (i <= 1) {
arr.push(i)
} else {
arr.push(arr[i - 1] + arr[i - 2])
}
i++
}
return arr
}
let fibonacci = getFibonacci(10);
for (let i = 0; i < fibonacci.length; i++) {
//从第三个元素开始画,符合斐波那契数列的规律
if (i >= 2) {
draw(fibonacci[i - 1], i, fibonacci[i])
}
}
</script>
</body>
</html>

js 斐波那契数列的获取和曲线的实现(每日一更)的更多相关文章

  1. js 斐波那契数列(兔子问题)

    对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...

  2. js斐波那契数列

    斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...... 这个数列从第3项开始,每一项都等于前两项之和. 1.递归算法: function ...

  3. 斐波那契数列中获取第n个数据值

    class Fibonacci { /** * Description:迭代方法获取fibonacci第n项数值 * * @param int $n * @return int */ public s ...

  4. js斐波那契数列求和

    一.递归算法  function recurFib(n) {   if (n < 2) {     return n;   }   else {     return recurFib(n-1) ...

  5. 斐波那契数列公式算法-JS实现

    之前算斐波那契数列都是算前两个数相加实现的 比如0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181 ...

  6. javascript . 03 函数定义、函数参数(形参、实参)、函数的返回值、冒泡函数、函数的加载、局部变量与全局变量、隐式全局变量、JS预解析、是否是质数、斐波那契数列

    1.1 知识点 函数:就是可以重复执行的代码块 2.  组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖 ...

  7. js算法集合(二) javascript实现斐波那契数列 (兔子数列)

    js算法集合(二)  斐波那契数列 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列进行研究,来加深对循环的理解.     Javascript实 ...

  8. Tips_of_JS 之 利用JS实现水仙花数的寻找与实现斐波那契数列

    一.水仙花数 1.啥是水仙花数? 水仙花数是指一个 n 位正整数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身.(例如:1^3 + 5^3+ 3^3 = 153) 2.利用JS实现对水 ...

  9. 太原面经分享:如何用js实现返回斐波那契数列的第n个值的函数

    面试攒经验,let's go! 值此高考来临之际,闲不住的我又双叒叕出发去面试攒经验了,去了公司交待一番流程后,面试官甩给了我一张A4纸,上面写着一道js算法笔试题(一开始我并不知道这是在考察js算法 ...

随机推荐

  1. idea使用教程-模板的使用

    一.代码模板是什么 它的原理就是配置一些常用代码字母缩写,在输入简写时可以出现你预定义的固定模式的代码,使得开发效率大大提高,同时也可以增加个性化.最简单的例子就是在Java中输入sout会出现Sys ...

  2. C++单元测试框架gtest使用

    作用 作为代码编码人员,写完代码,不仅要保证编译通过和运行,还要保证逻辑尽量正确.单元测试是对软件可测试最小单元的检查和校验.单元测试与其他测试不同,单元测试可看作是编码工作的一部分,应该由程序员完成 ...

  3. [opencv]白平衡算法中的灰度世界法,改善图像发红发蓝发绿的现象

    #include<iostream> #include <opencv2/opencv.hpp> #include <math.h> using namespace ...

  4. 使用 JavaScript自定义函数计算出教室的体积大小,其中教室的长、宽、高分别为 8 米、5 米、3 米

    查看本章节 查看作业目录 需求说明: 使用 JavaScript自定义函数计算出教室的体积大小,其中教室的长.宽.高分别为 8 米.5 米.3 米 实现思路: 创建 HTML 页面 在页面的 < ...

  5. MySQL数据库基础(2)表结构管理

    目录 一.关系模型与数据表 二.MySQL数据类型 三.数据完整性约束 四.参照完整性约束 一.关系模型与数据表 概念 ①关系模型:是由若干个关系模式组成的集合,关系模式的实例称为关系,每个关系实际上 ...

  6. python与redis交互(4)

    python可以使用redis模块来跟redis交互 redis模块的使用 安装模块: pip3 install redis 导入模块:import redis 连接方式 严格连接模式:r=redis ...

  7. react中使用charles实现本地数据mock

    首先下载charles软件地址,更详细的使用方法都包含在操作文档里,包含汉化版补丁(下载后查看) 链接:https://pan.baidu.com/s/1Q5rMbcX0Wus7AwdGUWa-Wg ...

  8. Go语言读取各种配置文件

    配置文件结构体 config.go package config type System struct { Mode string `mapstructure:"mode" jso ...

  9. 简述伪共享和缓存一致性MESI

    什么是伪共享 计算机系统中为了解决主内存与CPU运行速度的差距,在CPU与主内存之间添加了一级或者多级高速缓冲存储器(Cache),这个Cache一般是集成到CPU内部的,所以也叫 CPU Cache ...

  10. 解读与部署(三):基于 Kubernetes 的微服务部署即代码

    在基于 Kubernetes 的基础设施即代码一文中,我概要地介绍了基于 Kubernetes 的 .NET Core 微服务和 CI/CD 动手实践工作坊使用的基础设施是如何使用代码描述的,以及它的 ...