D. Puzzles(Codeforces Round #362 (Div. 2))
Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.
Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:
let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)
As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).
Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.
The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.
The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.
In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].
Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.
7
1 2 1 1 4 4
1.0 4.0 5.0 3.5 4.5 5.0 5.0
12
1 1 2 2 4 4 3 3 1 10 8
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0
题意:给你一棵树,然后用dfs随即给每个点标号,求每个点标号的期望;
思路:dfs+概率dp;
我们可以知道根节点的期望为1;
然后,他的子节点都是等概率的。
dp数组是各个节点的期望。
先给样例一的图:
我们写第二层的排列
1,1 2 4 5
2,1 2 5 4
3,1 4 2 5
4,1 4 5 2
5,1 5 2 4
6,1 5 4 2
所以节点2的期望为dp[1]+((1+size(4)+size(5))*2+size(4)+1+size(5)+1+1+1)/6;
根据这个我们先试着猜想dp[v]=dp[u]+1+(size(u)-size(v)-1)/2;
这就是状态转移方程;
我们先把上面到下面一层所必须加上一步先加上,也就是dp[u]+1;
然后我们可以知道下面所有的排列中,此节点的兄弟节点,要么排在这个节点之前要么之后,所一其他节点对于该节点的贡献为size()/2;
也就是排在前面和后面是等概率的;
复杂度O(n)
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<stdlib.h>
9 #include<vector>
10 using namespace std;
11 vector<int>vec[100006];
12 long long cnt[100006];
13 long long dfs1(int n);
14 double dp[100006];
15 void dfs(int n);
16 int main(void)
17 {
18 int i,j,k;
19 while(scanf("%d",&k)!=EOF)
20 {
21 int n;memset(dp,0,sizeof(dp));
22 for(i=0; i<100006; i++)
23 {
24 cnt[i]=0;
25 vec[i].clear();
26 }
27 for(i=2; i<=k; i++)
28 {
29 scanf("%d",&n);
30 vec[n].push_back(i);
31 }
32 long long t=dfs1(1);
33 dp[1]=1.0;
34 dfs(1);printf("%.1f",dp[1]);
35 for(i=2; i<=k; i++)
36 {
37 printf(" %.1f",dp[i]);
38 }
39 printf("\n");
40 }
41 return 0;
42 }
43 long long dfs1(int n)
44 {
45 long long sum;
46 int i,j,k;
47 for(i=0; i<vec[n].size(); i++)
48 {
49 cnt[n]+=dfs1(vec[n][i]);
50 }
51 cnt[n]+=1;
52 return cnt[n];
53 }
54 void dfs(int n)
55 {
56 int i,j;
57 for(i=0; i<vec[n].size(); i++)
58 {
59 int x;
60 x=vec[n][i];
61 dp[x]=dp[n]+1.0;
62 dp[x]+=1.0*(cnt[n]-cnt[x]-1)/2.0;
63 dfs(x);
64 }
65 }
D. Puzzles(Codeforces Round #362 (Div. 2))的更多相关文章
- Codeforces Round #362 (Div. 2) D. Puzzles
D. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- 【转载】【树形DP】【数学期望】Codeforces Round #362 (Div. 2) D.Puzzles
期望计算的套路: 1.定义:算出所有测试值的和,除以测试次数. 2.定义:算出所有值出现的概率与其乘积之和. 3.用前一步的期望,加上两者的期望距离,递推出来. 题意: 一个树,dfs遍历子树的顺序是 ...
- Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)
题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...
- #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn
2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...
- Codeforces Round #362 (Div. 2) A.B.C
A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...
- A. Puzzles CodeForces Round #196 (Div.2)
题目的大意是,给你 m 个数字,让你从中选 n 个,使得选出的数字的极差最小. 好吧,超级大水题.因为要极差最小,所以当然想到要排个序咯,然后去连续的 n 个数字,因为数据不大,所以排完序之后直接暴力 ...
- Codeforces Round #362 (Div. 2)->B. Barnicle
B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...
- Codeforces Round #362 (Div. 2)->A. Pineapple Incident
A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...
- Codeforces Round #362 (Div. 2) B 模拟
B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...
随机推荐
- 字符串String的trim()方法
用来删除字符串两端的空白字符并返回,trim方法并不影响原来的字符串本身,它返回的是一个新的字符串 String a = " Hello World "; String b = ...
- 强化学习实战 | 自定义Gym环境之井字棋
在文章 强化学习实战 | 自定义Gym环境 中 ,我们了解了一个简单的环境应该如何定义,并使用 print 简单地呈现了环境.在本文中,我们将学习自定义一个稍微复杂一点的环境--井字棋.回想一下井字棋 ...
- Netty之Channel*
Netty之Channel* 本文内容主要参考**<<Netty In Action>> ** 和Netty的文档和源码,偏笔记向. 先简略了解一下ChannelPipelin ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(六)-FatFs使用的思路介绍
[STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 [STM3 ...
- Lottie 使用
原文:https://mp.weixin.qq.com/s?__biz=MzIxNjc0ODExMA==&mid=2247485033&idx=1&sn=54dd477b4c4 ...
- GO 通过进程号输出运行运行信息
操作系统应用可以使用PID来查找关于进程本身的信息.当进程失败时获取到的PID就非常有价值,这样就可以使用PID跟踪整个系统中的系统日志,如/var/log/messages./var/log/sys ...
- go goroutines 使用小结
go +方法 就实现了一个并发,但由于环境不同,需要对并发的个数进行限制,限制同一时刻并发的个数,后面称此为"并发限流". 为什么要并发限流? 虽然GO M+P+G的方式号称可以轻 ...
- SpringColud微服务-微服务概述
一.什么是微服务架构 微服务架构是一种架构模式,它提倡讲单一应用程序划分为一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.每个服务运行在单独的进程当中,服务与服务之间采用轻量级的通信机制 ...
- sftp 上传下载 命令介绍
sftp是Secure FileTransferProtocol的缩写,安全文件传送协议.可以为传输文件提供一种安全的加密方法. sftp与 ftp有着几乎一样的语法和功能.SFTP为 SSH的一部分 ...
- 12.Vue.js 表单
这节我们为大家介绍 Vue.js 表单上的应用. 你可以用 v-model 指令在表单控件元素上创建双向数据绑定. <div id="app"> <p>in ...
