D. Puzzles

Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.

Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:


let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)

As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).

Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.

Output

In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].

Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
Input
7
1 2 1 1 4 4
Output
1.0 4.0 5.0 3.5 4.5 5.0 5.0 
Input
12
1 1 2 2 4 4 3 3 1 10 8
Output
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0 

题意:给你一棵树,然后用dfs随即给每个点标号,求每个点标号的期望;
思路:dfs+概率dp;
我们可以知道根节点的期望为1;
然后,他的子节点都是等概率的。
dp数组是各个节点的期望。
先给样例一的图:

我们写第二层的排列
1,1 2 4 5
2,1 2 5 4
3,1 4 2 5
4,1 4 5 2
5,1 5 2 4
6,1 5 4 2
所以节点2的期望为dp[1]+((1+size(4)+size(5))*2+size(4)+1+size(5)+1+1+1)/6;
根据这个我们先试着猜想dp[v]=dp[u]+1+(size(u)-size(v)-1)/2;
这就是状态转移方程;
我们先把上面到下面一层所必须加上一步先加上,也就是dp[u]+1;
然后我们可以知道下面所有的排列中,此节点的兄弟节点,要么排在这个节点之前要么之后,所一其他节点对于该节点的贡献为size()/2;
也就是排在前面和后面是等概率的;
复杂度O(n)
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<stdlib.h>
9 #include<vector>
10 using namespace std;
11 vector<int>vec[100006];
12 long long cnt[100006];
13 long long dfs1(int n);
14 double dp[100006];
15 void dfs(int n);
16 int main(void)
17 {
18 int i,j,k;
19 while(scanf("%d",&k)!=EOF)
20 {
21 int n;memset(dp,0,sizeof(dp));
22 for(i=0; i<100006; i++)
23 {
24 cnt[i]=0;
25 vec[i].clear();
26 }
27 for(i=2; i<=k; i++)
28 {
29 scanf("%d",&n);
30 vec[n].push_back(i);
31 }
32 long long t=dfs1(1);
33 dp[1]=1.0;
34 dfs(1);printf("%.1f",dp[1]);
35 for(i=2; i<=k; i++)
36 {
37 printf(" %.1f",dp[i]);
38 }
39 printf("\n");
40 }
41 return 0;
42 }
43 long long dfs1(int n)
44 {
45 long long sum;
46 int i,j,k;
47 for(i=0; i<vec[n].size(); i++)
48 {
49 cnt[n]+=dfs1(vec[n][i]);
50 }
51 cnt[n]+=1;
52 return cnt[n];
53 }
54 void dfs(int n)
55 {
56 int i,j;
57 for(i=0; i<vec[n].size(); i++)
58 {
59 int x;
60 x=vec[n][i];
61 dp[x]=dp[n]+1.0;
62 dp[x]+=1.0*(cnt[n]-cnt[x]-1)/2.0;
63 dfs(x);
64 }
65 }
 

D. Puzzles(Codeforces Round #362 (Div. 2))的更多相关文章

  1. Codeforces Round #362 (Div. 2) D. Puzzles

    D. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  2. 【转载】【树形DP】【数学期望】Codeforces Round #362 (Div. 2) D.Puzzles

    期望计算的套路: 1.定义:算出所有测试值的和,除以测试次数. 2.定义:算出所有值出现的概率与其乘积之和. 3.用前一步的期望,加上两者的期望距离,递推出来. 题意: 一个树,dfs遍历子树的顺序是 ...

  3. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  4. #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn

    2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...

  5. Codeforces Round #362 (Div. 2) A.B.C

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. A. Puzzles CodeForces Round #196 (Div.2)

    题目的大意是,给你 m 个数字,让你从中选 n 个,使得选出的数字的极差最小. 好吧,超级大水题.因为要极差最小,所以当然想到要排个序咯,然后去连续的 n 个数字,因为数据不大,所以排完序之后直接暴力 ...

  7. Codeforces Round #362 (Div. 2)->B. Barnicle

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

  8. Codeforces Round #362 (Div. 2)->A. Pineapple Incident

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #362 (Div. 2) B 模拟

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

随机推荐

  1. nodeJs,Express中间件是什么与常见中间件

    中间件的功能和分类 中间件的本质就是一个函数,在收到请求和返回相应的过程中做一些我们想做的事情.Express文档中对它的作用是这么描述的: 执行任何代码.修改请求和响应对象.终结请求-响应循环.调用 ...

  2. 【leetcode】986. Interval List Intersections (双指针)

    You are given two lists of closed intervals, firstList and secondList, where firstList[i] = [starti, ...

  3. ComponentScan注解的使用

    在项目初始化时,会将加@component,@service...相关注解的类添加到spring容器中. 但是项目需要,项目初始化时自动过滤某包下面的类,不将其添加到容器中. 有两种实现方案, 1.如 ...

  4. Gradle入门及SpringBoot项目构建

    https://blog.csdn.net/qq_27520051/article/details/90384483 一.介绍 Gradle 是一种构建工具,它抛弃了基于XML的构建脚本,取而代之的是 ...

  5. ReactiveCocoa操作方法-重复

    retry重试      只要失败,就会重新执行创建信号中的block,直到成功. __block int i = 0; [[[RACSignal createSignal:^RACDisposabl ...

  6. 【编程思想】【设计模式】【结构模式Structural】桥梁模式/桥接模式bridge

    Python版 https://github.com/faif/python-patterns/blob/master/structural/bridge.py #!/usr/bin/env pyth ...

  7. lucene索引的增、删、改

    package com.hope.lucene;import org.apache.lucene.document.Document;import org.apache.lucene.document ...

  8. myfs 操作系统课内实验 文件管理系统 Ext2

    To 学弟学妹们: 写这个随笔原意是记录一下这个很有趣的实验 ,记录一下写的时候的细节和思路. 要是光是抄这个代码,反而使得这个实验失去了意义. 加油,这个实验收获真的很大. 任务描述: 用一个空白文 ...

  9. Nginx区分内部与外部

    目录 一.简介 二.配置 一.简介 场景: 当网站需要维护时,访问任何连接都显示维护页面 原理: 将任何访问都重定向到维护页面. 二.配置 server { listen 80; index inde ...

  10. MySQL信息系统函数