D. Puzzles

Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.

Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:


let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)

As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).

Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.

Output

In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].

Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
Input
7
1 2 1 1 4 4
Output
1.0 4.0 5.0 3.5 4.5 5.0 5.0 
Input
12
1 1 2 2 4 4 3 3 1 10 8
Output
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0 

题意:给你一棵树,然后用dfs随即给每个点标号,求每个点标号的期望;
思路:dfs+概率dp;
我们可以知道根节点的期望为1;
然后,他的子节点都是等概率的。
dp数组是各个节点的期望。
先给样例一的图:

我们写第二层的排列
1,1 2 4 5
2,1 2 5 4
3,1 4 2 5
4,1 4 5 2
5,1 5 2 4
6,1 5 4 2
所以节点2的期望为dp[1]+((1+size(4)+size(5))*2+size(4)+1+size(5)+1+1+1)/6;
根据这个我们先试着猜想dp[v]=dp[u]+1+(size(u)-size(v)-1)/2;
这就是状态转移方程;
我们先把上面到下面一层所必须加上一步先加上,也就是dp[u]+1;
然后我们可以知道下面所有的排列中,此节点的兄弟节点,要么排在这个节点之前要么之后,所一其他节点对于该节点的贡献为size()/2;
也就是排在前面和后面是等概率的;
复杂度O(n)
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<stdlib.h>
9 #include<vector>
10 using namespace std;
11 vector<int>vec[100006];
12 long long cnt[100006];
13 long long dfs1(int n);
14 double dp[100006];
15 void dfs(int n);
16 int main(void)
17 {
18 int i,j,k;
19 while(scanf("%d",&k)!=EOF)
20 {
21 int n;memset(dp,0,sizeof(dp));
22 for(i=0; i<100006; i++)
23 {
24 cnt[i]=0;
25 vec[i].clear();
26 }
27 for(i=2; i<=k; i++)
28 {
29 scanf("%d",&n);
30 vec[n].push_back(i);
31 }
32 long long t=dfs1(1);
33 dp[1]=1.0;
34 dfs(1);printf("%.1f",dp[1]);
35 for(i=2; i<=k; i++)
36 {
37 printf(" %.1f",dp[i]);
38 }
39 printf("\n");
40 }
41 return 0;
42 }
43 long long dfs1(int n)
44 {
45 long long sum;
46 int i,j,k;
47 for(i=0; i<vec[n].size(); i++)
48 {
49 cnt[n]+=dfs1(vec[n][i]);
50 }
51 cnt[n]+=1;
52 return cnt[n];
53 }
54 void dfs(int n)
55 {
56 int i,j;
57 for(i=0; i<vec[n].size(); i++)
58 {
59 int x;
60 x=vec[n][i];
61 dp[x]=dp[n]+1.0;
62 dp[x]+=1.0*(cnt[n]-cnt[x]-1)/2.0;
63 dfs(x);
64 }
65 }
 

D. Puzzles(Codeforces Round #362 (Div. 2))的更多相关文章

  1. Codeforces Round #362 (Div. 2) D. Puzzles

    D. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  2. 【转载】【树形DP】【数学期望】Codeforces Round #362 (Div. 2) D.Puzzles

    期望计算的套路: 1.定义:算出所有测试值的和,除以测试次数. 2.定义:算出所有值出现的概率与其乘积之和. 3.用前一步的期望,加上两者的期望距离,递推出来. 题意: 一个树,dfs遍历子树的顺序是 ...

  3. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  4. #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn

    2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...

  5. Codeforces Round #362 (Div. 2) A.B.C

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. A. Puzzles CodeForces Round #196 (Div.2)

    题目的大意是,给你 m 个数字,让你从中选 n 个,使得选出的数字的极差最小. 好吧,超级大水题.因为要极差最小,所以当然想到要排个序咯,然后去连续的 n 个数字,因为数据不大,所以排完序之后直接暴力 ...

  7. Codeforces Round #362 (Div. 2)->B. Barnicle

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

  8. Codeforces Round #362 (Div. 2)->A. Pineapple Incident

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #362 (Div. 2) B 模拟

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

随机推荐

  1. GeckoDriver的安装和使用

    GeckoDriver用于驱动Firefox,在这之前请确保已经正确安装好了Firefox浏览器并可以正常运行. 一.GeckoDriver的安装 GitHub:https://github.com/ ...

  2. Docker的基本使用及DockerFile的编写

    前言: 最近在准备面试,在复习到Docker相关内容时,想写一些东西分享给大家然后加深一下自己的印象,有了这篇随笔. Docker的简介: docker从文件系统.网络互连到进程隔离等等,极大的简化了 ...

  3. Pytorch学习笔记08----优化器算法Optimizer详解(SGD、Adam)

    1.优化器算法简述 首先来看一下梯度下降最常见的三种变形 BGD,SGD,MBGD,这三种形式的区别就是取决于我们用多少数据来计算目标函数的梯度,这样的话自然就涉及到一个 trade-off,即参数更 ...

  4. 学习java 7.12

    学习内容: File是文件和目录路径名的抽象表示,File封装的不是一个真正存在的文件,仅仅是一个路径名 File类的方法 绝对目录和相对目录的区别 字节流 使用字节输出流写数据的步骤 : 创建字节输 ...

  5. 内存管理——array new,array delete

    1.array new array new就是申请一个数组空间,所以在delete的时候一定不能忘记在delete前加[] delete加上[]符号以后,就相当于告诉系统"我这里是数组对象, ...

  6. 时光网内地影视票房Top100爬取

    为了和艺恩网的数据作比较,让结果更精确,在昨天又写了一个时光网信息的爬取,这次的难度比艺恩网的大不少,话不多说,先放代码 # -*- coding:utf-8 -*-from __future__ i ...

  7. redis安装与简单实用

    1.在Linux上redis的安装时十分简单的: 第一步:wget http://download.redis.io/releases/redis-2.8.12.tar.gz 解压: tar zxvf ...

  8. 『学了就忘』Linux启动引导与修复 — 74、Linux系统的修复模式(光盘修复模式)

    目录 1.光盘修复模式概念 2.光盘修复模式修复系统问题 (1)准备系统光盘 (2)进入BIOS (3)修改BIOS的启动顺序 (4)进入光盘修复模式 (5)修复系统 (6)修复系统实操 (7)总结 ...

  9. seata服务端和客户端配置(使用nacos进行注册发现,使用mysql进行数据持久化),以及过程中可能会出现的问题与解决方案

    seata服务端和客户端配置(使用nacos进行注册发现,使用mysql进行数据持久化),以及过程中可能会出现的问题与解决方案 说明: 之所以只用nacos进行了注册与发现,因为seata使用naco ...

  10. 为什么Redis集群有16384个槽

    一.前言 我在<那些年用过的Redis集群架构(含面试解析)>一文里提到过,现在redis集群架构,redis cluster用的会比较多. 如下图所示 对于客户端请求的key,根据公式H ...