Proximal Algorithms

这一节,作者总结了一些关于proximal的一些直观解释

Moreau-Yosida regularization

内部卷积(infimal convolution):

\[(f \: \Box \: g)(v)=\inf_x (f(x)+g(v-x))
\]

Moreau-Yosida envelope 或者 Moreau-Yosida regularization 为:

\[M_{\lambda f}=\lambda f \: \Box \: (1/2)\|\cdot\|_2^2
\]

, 于是:



事实上,这就是,我们在上一节提到过的东西。就像在上一节一样,可以证明:

\[M_f (x) = f(\mathbf{prox}(x)) + (1/2) \|x-\mathbf{prox}_f(x)\|_2^2
\]

以及:

\[\nabla M_{\lambda_f}(x) = (1 / \lambda)(x- \mathbf{prox}_{\lambda f}(x))
\]

虽然上面的我不知道在\(f\)不可微的条件下怎么证明.

于是有与上一节同样的结果:



总结一下就是,近端算子,实际上就是最小化\(M_{\lambda f}\), 等价于\(\nabla M_{f^*}\),即:

\[\mathbf{prox}_f(x) = \nabla M_{f^*} (x)
\]

这个,需要通过Moreau分解得到.

与次梯度的联系 \(\mathbf{prox}_{\lambda f} = (I + \lambda \partial f)^{-1}\)



上面的式子,有一个问题是,这个映射是单值函数吗(论文里也讲,用关系来讲更合适),因为\(\partial f\)的原因,不过,论文的意思好像是的,不过这并不影响证明:

改进的梯度路径

就像在第一节说的,和之前有关Moreau envelope表示里讲的:

\[\mathbf{prox}_{\lambda f} (x) = x - \lambda \nabla M_{\lambda f}(x)
\]

实际上,\(\mathbf{prox}_{\lambda f}\)可以视为最小化Moreau envelope的一个迭代路径,其步长为\(\lambda\). 还有一些相似的解释.

假设\(f\)是二阶可微的,且\(\nabla^2 f(x) \succ0\)(表正定),当\(\lambda \rightarrow 0\):

\[\mathbf{prox}_{\lambda f} (x) = (I + \lambda \nabla f)^{-1} (x) = x - \lambda \nabla f(x)+o(\lambda)
\]

这个的证明,我觉得是用到了变分学的知识:

\[\delta(I+\lambda \nabla f)^{-1}|_{\lambda=0}=-\frac{\nabla f}{(I+\lambda \nabla f)^{-2}}|_{\lambda =0}= -\nabla f
\]

所以上面的是一阶距离的刻画.

我们先来看\(f\)的一阶泰勒近似:



其近端算子为:



感觉,实际上是为:\(\mathbf{prox}_{\lambda \hat{f}_v^{(1)}}\)

相应的,还有二阶近似:



这个是Levenberg-Marquardt update的牛顿方法,虽然我不知道这玩意儿是什么.

上面的证明都是容易的,直接更具定义便能导出.

信赖域问题

proximal还可以用信赖域问题来解释:



而普通的proximal问题:



约束条件变成了惩罚项, 论文还指出,通过指定不同的参数\(\rho\)和\(\lambda\),俩个问题能互相达到对方的解.

Proximal Algorithms 3 Interpretation的更多相关文章

  1. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  2. Proximal Algorithms

    1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...

  3. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  4. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  5. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  6. Proximal Algorithms 7 Examples and Applications

    目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  9. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

随机推荐

  1. DBeaver客户端工具连接Hive

    目录 介绍 下载安装 相关配置 1.填写主机名 2.配置驱动 简单使用 主题设置 字体背景色 介绍 在hive命令行beeline中写一些很长的查询语句不是很方便,急需一个hive的客户端界面工具 D ...

  2. Gradle—Android配置详解

    参考[1]彻底弄明白Gradle相关配置       [2]Android Studio gradle配置详解

  3. ReactiveCocoa操作方法-重复

    retry重试      只要失败,就会重新执行创建信号中的block,直到成功. __block int i = 0; [[[RACSignal createSignal:^RACDisposabl ...

  4. 【编程思想】【设计模式】【其他模式】blackboard

    Python版 https://github.com/faif/python-patterns/blob/master/other/blackboard.py #!/usr/bin/env pytho ...

  5. MyBatis(2):CRUD操作

    编写接口 import com.shandx.pojo.User; import java.util.List; public interface UserMapper { <span clas ...

  6. vue实现input输入框的模糊查询

     最近在用uni-app做一个项目,使用的框架还是vue,想了好久才做出来 . HTML代码部分 <input type="text" focus class="s ...

  7. 『学了就忘』Linux服务管理 — 75、Linux系统中的服务

    目录 1.服务的介绍 2.Windows系统中的服务 3.Linux系统中服务的分类 4.独立的服务和基于xinetd服务的区别 5.如何查看一个服务是独立的服务还是基于xinetd的服务 (1)查看 ...

  8. ABP VNext框架基础知识介绍(2)--微服务的网关

    ABP VNext框架如果不考虑在微服务上的应用,也就是开发单体应用解决方案,虽然也是模块化开发,但其集成使用的难度会降低一个层级,不过ABP VNext和ABP框架一样,基础内容都会设计很多内容,如 ...

  9. [BUUCTF]PWN——CmmC_Simplerop

    cmcc_simplerop 附件 步骤 例行检查,32位,开启了nx保护 本地试运行一下程序,查看一下大概的情况 32位ida载入,习惯性的检索程序里的字符串,看了个寂寞,从main函数开始看程序 ...

  10. 【译】使用 Visual Studio 调试外部源代码

    您是否曾经需要调试并进入依赖于 NuGet 或 .NET 库的代码,而这些库并没有构建为您的解决方案的一部分? 现在,调试它们并不像调试作为解决方案一部分的项目那么容易.从 Visual Studio ...