Proximal Algorithms

这一节,作者总结了一些关于proximal的一些直观解释

Moreau-Yosida regularization

内部卷积(infimal convolution):

\[(f \: \Box \: g)(v)=\inf_x (f(x)+g(v-x))
\]

Moreau-Yosida envelope 或者 Moreau-Yosida regularization 为:

\[M_{\lambda f}=\lambda f \: \Box \: (1/2)\|\cdot\|_2^2
\]

, 于是:



事实上,这就是,我们在上一节提到过的东西。就像在上一节一样,可以证明:

\[M_f (x) = f(\mathbf{prox}(x)) + (1/2) \|x-\mathbf{prox}_f(x)\|_2^2
\]

以及:

\[\nabla M_{\lambda_f}(x) = (1 / \lambda)(x- \mathbf{prox}_{\lambda f}(x))
\]

虽然上面的我不知道在\(f\)不可微的条件下怎么证明.

于是有与上一节同样的结果:



总结一下就是,近端算子,实际上就是最小化\(M_{\lambda f}\), 等价于\(\nabla M_{f^*}\),即:

\[\mathbf{prox}_f(x) = \nabla M_{f^*} (x)
\]

这个,需要通过Moreau分解得到.

与次梯度的联系 \(\mathbf{prox}_{\lambda f} = (I + \lambda \partial f)^{-1}\)



上面的式子,有一个问题是,这个映射是单值函数吗(论文里也讲,用关系来讲更合适),因为\(\partial f\)的原因,不过,论文的意思好像是的,不过这并不影响证明:

改进的梯度路径

就像在第一节说的,和之前有关Moreau envelope表示里讲的:

\[\mathbf{prox}_{\lambda f} (x) = x - \lambda \nabla M_{\lambda f}(x)
\]

实际上,\(\mathbf{prox}_{\lambda f}\)可以视为最小化Moreau envelope的一个迭代路径,其步长为\(\lambda\). 还有一些相似的解释.

假设\(f\)是二阶可微的,且\(\nabla^2 f(x) \succ0\)(表正定),当\(\lambda \rightarrow 0\):

\[\mathbf{prox}_{\lambda f} (x) = (I + \lambda \nabla f)^{-1} (x) = x - \lambda \nabla f(x)+o(\lambda)
\]

这个的证明,我觉得是用到了变分学的知识:

\[\delta(I+\lambda \nabla f)^{-1}|_{\lambda=0}=-\frac{\nabla f}{(I+\lambda \nabla f)^{-2}}|_{\lambda =0}= -\nabla f
\]

所以上面的是一阶距离的刻画.

我们先来看\(f\)的一阶泰勒近似:



其近端算子为:



感觉,实际上是为:\(\mathbf{prox}_{\lambda \hat{f}_v^{(1)}}\)

相应的,还有二阶近似:



这个是Levenberg-Marquardt update的牛顿方法,虽然我不知道这玩意儿是什么.

上面的证明都是容易的,直接更具定义便能导出.

信赖域问题

proximal还可以用信赖域问题来解释:



而普通的proximal问题:



约束条件变成了惩罚项, 论文还指出,通过指定不同的参数\(\rho\)和\(\lambda\),俩个问题能互相达到对方的解.

Proximal Algorithms 3 Interpretation的更多相关文章

  1. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  2. Proximal Algorithms

    1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...

  3. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  4. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  5. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  6. Proximal Algorithms 7 Examples and Applications

    目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  9. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

随机推荐

  1. 12-gauge/bore shotgun

    12-gauge/bore shotgun不是弹夹(magazine)容量为12发的霰(xian)弹枪.[LDOCE]gauge - a measurement of the width or thi ...

  2. 『学了就忘』Linux启动引导与修复 — 68、Linux系统运行级别

    目录 1.Linux系统运行级别介绍 2.查看运行级别 3.修改当前系统的运行级别 4.系统默认运行级别 5./etc/rc.d/rc.local文件说明 1.Linux系统运行级别介绍 Linux默 ...

  3. 在应用程序中的所有其他bean被销毁之前执行一步工作

    1.实现ServletContextListener.ApplicationContextAware两个接口,在销毁方法里借助ApplicationContextAware注入的application ...

  4. 【Java基础】ExecutorService的使用

    ExecutorService是java中的一个异步执行的框架,通过使用ExecutorService可以方便的创建多线程执行环境. 本文将会详细的讲解ExecutorService的具体使用. 创建 ...

  5. Jmeter初级入门教程

    <jmeter:菜鸟入门到进阶>系列 创建一个简单的自动化脚本 创建线程组[Thread Group]: 右击[TestPlan]选择[Add]--[Thread(Users)]--[Th ...

  6. java多线程2:Thread中的方法

    静态方法: Thread类中的静态方法表示操作的线程是"正在执行静态方法所在的代码块的线程". 为什么Thread类中要有静态方法,这样就能对CPU当前正在运行的线程进行操作.下面 ...

  7. 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN

    层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...

  8. [BUUCTF]PWN——inndy_rop

    inndy_rop 附件 步骤: 例行检查,32位,开启了nx保护 本地调试运行没看出个啥,直接上ida,一开始f5会报错, 找到报错提示的位置,点击option–>general调出如图的界面 ...

  9. 自动化集成:Pipeline流水语法详解

    前言:该系列文章,围绕持续集成:Jenkins+Docker+K8S相关组件,实现自动化管理源码编译.打包.镜像构建.部署等操作:本篇文章主要描述Pipeline流水线用法. 一.Webhook原理 ...

  10. CF1080B Margarite and the best present 题解

    Content 有 \(t\) 次询问,每次询问给定两个整数 \(l,r\),求 \(\sum\limits_{i=l}^r (-1)^i\times i\). 数据范围:\(1\leqslant t ...