Proximal Algorithms 3 Interpretation
这一节,作者总结了一些关于proximal的一些直观解释
Moreau-Yosida regularization
内部卷积(infimal convolution):
\]
Moreau-Yosida envelope 或者 Moreau-Yosida regularization 为:
\]
, 于是:
事实上,这就是,我们在上一节提到过的东西。就像在上一节一样,可以证明:
\]
以及:
\]
虽然上面的我不知道在\(f\)不可微的条件下怎么证明.
于是有与上一节同样的结果:
总结一下就是,近端算子,实际上就是最小化\(M_{\lambda f}\), 等价于\(\nabla M_{f^*}\),即:
\]
这个,需要通过Moreau分解得到.
与次梯度的联系 \(\mathbf{prox}_{\lambda f} = (I + \lambda \partial f)^{-1}\)
上面的式子,有一个问题是,这个映射是单值函数吗(论文里也讲,用关系来讲更合适),因为\(\partial f\)的原因,不过,论文的意思好像是的,不过这并不影响证明:
改进的梯度路径
就像在第一节说的,和之前有关Moreau envelope表示里讲的:
\]
实际上,\(\mathbf{prox}_{\lambda f}\)可以视为最小化Moreau envelope的一个迭代路径,其步长为\(\lambda\). 还有一些相似的解释.
假设\(f\)是二阶可微的,且\(\nabla^2 f(x) \succ0\)(表正定),当\(\lambda \rightarrow 0\):
\]
这个的证明,我觉得是用到了变分学的知识:
\]
所以上面的是一阶距离的刻画.
我们先来看\(f\)的一阶泰勒近似:
其近端算子为:
感觉,实际上是为:\(\mathbf{prox}_{\lambda \hat{f}_v^{(1)}}\)
相应的,还有二阶近似:
这个是Levenberg-Marquardt update的牛顿方法,虽然我不知道这玩意儿是什么.
上面的证明都是容易的,直接更具定义便能导出.
信赖域问题
proximal还可以用信赖域问题来解释:
而普通的proximal问题:
约束条件变成了惩罚项, 论文还指出,通过指定不同的参数\(\rho\)和\(\lambda\),俩个问题能互相达到对方的解.
Proximal Algorithms 3 Interpretation的更多相关文章
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms
1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 1 介绍
目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...
- Proximal Algorithms 7 Examples and Applications
目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- Proximal Gradient Descent for L1 Regularization
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题: ...
- Matrix Factorization, Algorithms, Applications, and Avaliable packages
矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...
随机推荐
- 12-gauge/bore shotgun
12-gauge/bore shotgun不是弹夹(magazine)容量为12发的霰(xian)弹枪.[LDOCE]gauge - a measurement of the width or thi ...
- 『学了就忘』Linux启动引导与修复 — 68、Linux系统运行级别
目录 1.Linux系统运行级别介绍 2.查看运行级别 3.修改当前系统的运行级别 4.系统默认运行级别 5./etc/rc.d/rc.local文件说明 1.Linux系统运行级别介绍 Linux默 ...
- 在应用程序中的所有其他bean被销毁之前执行一步工作
1.实现ServletContextListener.ApplicationContextAware两个接口,在销毁方法里借助ApplicationContextAware注入的application ...
- 【Java基础】ExecutorService的使用
ExecutorService是java中的一个异步执行的框架,通过使用ExecutorService可以方便的创建多线程执行环境. 本文将会详细的讲解ExecutorService的具体使用. 创建 ...
- Jmeter初级入门教程
<jmeter:菜鸟入门到进阶>系列 创建一个简单的自动化脚本 创建线程组[Thread Group]: 右击[TestPlan]选择[Add]--[Thread(Users)]--[Th ...
- java多线程2:Thread中的方法
静态方法: Thread类中的静态方法表示操作的线程是"正在执行静态方法所在的代码块的线程". 为什么Thread类中要有静态方法,这样就能对CPU当前正在运行的线程进行操作.下面 ...
- 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...
- [BUUCTF]PWN——inndy_rop
inndy_rop 附件 步骤: 例行检查,32位,开启了nx保护 本地调试运行没看出个啥,直接上ida,一开始f5会报错, 找到报错提示的位置,点击option–>general调出如图的界面 ...
- 自动化集成:Pipeline流水语法详解
前言:该系列文章,围绕持续集成:Jenkins+Docker+K8S相关组件,实现自动化管理源码编译.打包.镜像构建.部署等操作:本篇文章主要描述Pipeline流水线用法. 一.Webhook原理 ...
- CF1080B Margarite and the best present 题解
Content 有 \(t\) 次询问,每次询问给定两个整数 \(l,r\),求 \(\sum\limits_{i=l}^r (-1)^i\times i\). 数据范围:\(1\leqslant t ...