洛谷题面传送门

又是一道需要一些观察的数论 hot tea……

注意到题目中 \(b·f(a,a+b)=(a+b)·f(a,b)\) 这个柿子长得有点像求解 \(\gcd\) 的辗转相除法,因此考虑从这方面入手解决这道题,不难发现对于两个数 \((a,b)\),通过辗转相除法咱们总可以得到 \(f(\gcd(a,b),\gcd(a,b))\) 处。那么我们考虑归纳求出 \(f(a,b)\) 是个什么东西,记 \(d=\gcd(a,b)\),由于我们不管怎么辗转相除都只能除到 \(f(d,d)\) 处,因此我们保持 \(f(d,d)\)​​ 不变好了,那么 \(f(d,2d)=2f(d,d),f(d,3d)=3f(d,d),\cdots,f(d,kd)=kf(d,d)\),而 \(f((k+1)d,kd)=(k+1)f(d,kd)=k(k+1)f(d,d)\),\(f((2k+1)d,kd)=\dfrac{2k+1}{k+1}·f((k+1)d,kd)=(2k+1)kf(d,d)\),如此归纳下去不难得出:

\[f(ad,bd)=abf(d,d)(a\perp b)
\]

也就是说我们只用维护所有 \(f(d,d)\) 的变化即可。

注意到当我们改变某个 \(f(a,b)=x\) 时候,由于 \(f(a,b)=\dfrac{ab}{\gcd(a,b)^2}f(\gcd(a,b),\gcd(a,b))\),因此改变 \(f(a,b)\) 会影响 \(f(\gcd(a,b),\gcd(a,b))\),也进而影响其他满足 \(\gcd(x,y)=\gcd(a,b)\) 的 \(f(x,y)\) 的值。而对于 \(d\ne\gcd(a,b)\),改变 \(f(a,b)\) 显然是不会影响 \(f(d,d)\) 的值的,因此改变 \(f(a,b)\) 只会影响一个 \(f(d,d)\) 的值。

接下来考虑求解答案。

\[\begin{aligned}
ans&=\sum\limits_{i=1}^k\sum\limits_{j=1}^k\dfrac{ij}{\gcd(i,j)^2}f(\gcd(i,j),\gcd(i,j))\\
&=\sum\limits_{d=1}^kf(d,d)\dfrac{1}{d^2}\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{n/d}id·jd[\gcd(i,j)=1]\\
&=\sum\limits_{d=1}^kf(d,d)\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{n/d}ij[\gcd(i,j)=1]\\
\end{aligned}
\]

\[g(x)=\sum\limits_{i=1}^x\sum\limits_{j=1}^xij[\gcd(i,j)=1]
\]

那么

\[ans=\sum\limits_{d=1}^kf(d,d)g(\lfloor\dfrac{k}{d}\rfloor)
\]

我们先不考虑 \(g(x)\) 怎么求,假设我们已经求得了所有 \(g(x)\),那么显然可以对 \(\lfloor\dfrac{k}{d}\rfloor\) 整除分块,那么我们需要求出 \(f(d,d)\) 的前缀和,又因为要修改,因此我们需要一个支持修改、查询前缀和的数据结构。有人肯定会想树状数组,不过对于此题而言,由于修改次数为 \(m\),查询次数为 \(m\sqrt{n}\),因此直接 BIT 复杂度为 \(m\sqrt{n}\log n\) 无法通过,因此考虑根号平衡的思想,众所周知分块可以实现 \(\mathcal O(\sqrt{n})\) 修改 \(\mathcal O(1)\) 查询前缀和,使用这样的数据结构维护一下即可 \(\mathcal O(m\sqrt{n})\) 查询。

最后考虑 \(g(x)\) 怎么求,直接整除分块是 \(n\sqrt{n}\) 的,无法通过。因此考虑不反演。首先证明一个 Lemma:

\[\sum\limits_{i=1}^xi[\gcd(i,x)=1]=\dfrac{x(\varphi(x)+\epsilon(x))}{2}
\]

证明大概就 \(\forall i\le x\),若 \(i\perp x\),那么 \((x-i)\perp x\),那么我们就对于所有 \(i\le x,i\perp x\),将 \(i\) 与 \(x-i\) 配对形成一个 \(x\) 即可,这样共可以配成 \(\dfrac{\varphi(x)}{2}\) 对,然后对 \(x=1\) 和 \(x=2\) 特判一下即可。

又这个引理可知

\[\begin{aligned}
g(x)&=g(x-1)+2x\sum\limits_{i=1}^xi[\gcd(i,x)=1]-\epsilon(x)\\
&=g(x-1)+x^2(\varphi(x)+\epsilon(x))-\epsilon(x)\\
&=g(x-1)+x^2\varphi(x)
\end{aligned}
\]

因此

\[g(x)=\sum\limits_{i=1}^xi^2\varphi(i)
\]

线筛算算即可。

const int MAXN=4e6;
const int BLK=2000;
const int MOD=1e9+7;
void pls(int &x,int v){((x+=v)>=MOD)&&(x-=MOD);}
int n,qu,phi[MAXN+5],pr[MAXN/8+5],prcnt=0,s[MAXN+5];
bitset<MAXN+5> vis;
void sieve(int n){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]) phi[i]=i-1,pr[++prcnt]=i;
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
else phi[i*pr[j]]=phi[i]*phi[pr[j]];
}
}
for(int i=1;i<=n;i++) s[i]=(s[i-1]+1ll*i*i%MOD*phi[i])%MOD;
}
int L[BLK+5],R[BLK+5],bel[MAXN+5],blk_cnt,blk_sz;
int sum_blk[BLK+5],sum_tot[MAXN+5];
void add(int x,int v){
for(int i=bel[x];i<=blk_cnt;i++) pls(sum_blk[i],v);
for(int i=x;i<=R[bel[x]];i++) pls(sum_tot[i],v);
}
int ask(int x){if(!x) return 0;return (sum_blk[bel[x]-1]+sum_tot[x])%MOD;}
int f[MAXN+5];
int main(){
scanf("%d%d",&qu,&n);sieve(n);
// for(int i=1;i<=n;i++) printf("%d\n",s[i]);
blk_sz=(int)sqrt(n);blk_cnt=(n-1)/blk_sz+1;
int sum=0;
for(int i=1;i<=blk_cnt;i++){
L[i]=(i-1)*blk_sz+1;R[i]=min(i*blk_sz,n);int sum0=0;
for(int j=L[i];j<=R[i];j++){
bel[j]=i;sum0=(sum0+1ll*j*j)%MOD;
sum_tot[j]=sum0;f[j]=1ll*j*j%MOD;
// printf("%d %d\n",j,sum0);
} pls(sum,sum0);sum_blk[i]=sum;
// printf("%d %d\n",i,sum);
}
while(qu--){
int a,b,k;ll v;scanf("%d%d%lld%d",&a,&b,&v,&k);
int d=__gcd(a,b);add(d,(MOD-f[d])%MOD);
f[d]=(v/(1ll*a*b/d/d))%MOD;add(d,f[d]);
int res=0;
for(int l=1,r;l<=k;l=r+1){
r=k/(k/l);
// printf("%d %d %d\n",l,r,(ask(r)-ask(l-1)+MOD)%MOD);
res=(res+1ll*(ask(r)-ask(l-1)+MOD)*s[k/l])%MOD;
} printf("%d\n",res);
}
return 0;
}

洛谷 P3700 - [CQOI2017]小Q的表格(找性质+数论)的更多相关文章

  1. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

  2. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  3. 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告

    P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...

  4. BZOJ4813或洛谷3698 [CQOI2017]小Q的棋盘

    BZOJ原题链接 洛谷原题链接 贪心或树形\(DP\)都可做,但显然\(DP\)式子不好推(因为我太菜了),所以我选择贪心. 很显然从根出发主干走最长链是最优的,而剩下的点每个都需要走两步,所以用除去 ...

  5. 洛谷P3698 [CQOI2017]小Q的棋盘

    传送门 考虑一个贪心,先在根节点周围转一圈,然后再往下走最长链肯定是最优的 然后设最长链的长度为$d$,如果$m\leq d$,那么答案为$m+1$ 否则的话还剩下$m-d+1$步,又得保证能走回来, ...

  6. 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)

    [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...

  7. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  8. [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)

    4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 832  Solved: 342[Submit][Statu ...

  9. [bzoj4815]: [Cqoi2017]小Q的表格

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. ...

随机推荐

  1. 【c++ Prime 学习笔记】第19章 特殊工具与技术

    某些程序对内存分配有特殊要求,不能直接使用标准内存管理机制 重载new和delete算符可控制内存分配的过程 19.1.1 重载new和delete 说法"重载new和delete" ...

  2. JVM:内存溢出OOM

    JVM:内存溢出OOM 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 经典错误 JVM 中常见的两个 OOM 错误 StackoverflowError:栈溢出 ...

  3. Spring Cloud Gateway Route Predicate Factory 的使用

    Spring Cloud Gateway的使用 一.需求 二.基本组成 1.简介 2.核型概念 1.Route 路由 2.Predicate 谓语.断言 3.Filter 过滤器 3.工作原理 三.网 ...

  4. spring security实现简单的url权限拦截

    在一个系统中,权限的拦截是很常见的事情,通常情况下我们都是基于url进行拦截.那么在spring security中应该怎么配置呢. 大致步骤如下: 1.用户登录成功后我们需要拿到用户所拥有的权限,并 ...

  5. Noip模拟66 2021.10.2

    T1 接力比赛 思路就是直接做背包$dp$,然后看看容量相同的相加的最大值. 考虑如何在$dp$过程中进行优化 注意到转移方程的第二维枚举容量没有必要从容量总和开始枚举 那么我们便转移边统计前缀和,从 ...

  6. Verdi Transaction Debug Mode 简单使用

    转载:Verdi Transaction Debug Mode 简单使用_Holden_Liu的博客-CSDN博客 文档与源码: User Guide: Verdi_Transaction_and_P ...

  7. C++常见STL介绍

    栈 :FILO 栈(stack)又名堆栈,它是一种线性表,是一个后进先出的数据结构. 使用时须加上头文件:#include<stack> 允许进行插入和删除操作的一端称为栈顶(top),另 ...

  8. hdu 2571 命运(水DP)

    题意: M*N的grid,每个格上有一个整数. 小明从左上角(1,1)打算走到右下角(M,N). 每次可以向下走一格,或向右走一格,或向右走到当前所在列的倍数的列的位置上.即:若当前位置是(i,j), ...

  9. cf Learn from Life (简单贪心)

    有N个人站在一楼.一个电梯最多承载K个人. 每个人都有一个想去的楼层.f[1]....f[N]. f[i]属于[2,2000] 从a层到b层需花费abs(a-b)秒. 问电梯送完所有人然后回到一楼至少 ...

  10. Java之父 James Gosling 发表博文 《Too Soon》纪念乔布斯。

    几个礼拜前,我们还在讨论乔布斯的辞职.虽然我们都知道这意味着什么,但是我没有想到一切来的如此之快.已经有很多关于这件事情的文章了,特别是"经济学人"的这篇文章. 乔布斯是一个很独特 ...