Codeforces 题面传送门 & 洛谷题面传送门

数位 dp 好题。

首先,由于是凸包,一但向量集合确定,凸包的形态肯定就已经确定了。考虑什么样的向量集合能够组成符合条件的凸包,我们假设第 \(i\) 个向量选了 \(c_i\) 次。因为凸包是首尾相连的,所以必然有 \(\sum\limits_{i=1}^nc_ix_i=0,\sum\limits_{i=1}^nc_iy_i=0\)。上式也可写作 \(\sum\limits_{x_i>0}c_ix_i=\sum\limits_{x_i<0}c_i(-x_i),\sum\limits_{y_i>0}c_iy_i=\sum\limits_{y_i<0}c_i(-y_i)\)。其次,由于凸包能够被放到 \(m\times m\) 的矩形内,所以凸包横纵坐标的极差必须 \(\le m\),以横坐标为例,还是因为原图是一个凸包,所以凸包的横坐标肯定是先涨一段,再跌到最低点,再涨到 \(0\),因此横坐标的极差为 \(\sum\limits_{x_i<0}c_i(-x_i)\),同理纵坐标的极差为 \(\sum\limits_{y_i<0}c_i(-y_i)\),因此一组 \(\{c_1,c_2,\cdots,c_n\}\) 符合条件的充要条件是:

  • \(\sum\limits_{x_i>0}c_ix_i=\sum\limits_{x_i<0}c_i(-x_i),\sum\limits_{y_i>0}c_iy_i=\sum\limits_{y_i<0}c_i(-y_i)\)
  • \(\sum\limits_{x_i<0}c_i(-x_i)\le m,\sum\limits_{y_i<0}c_i(-y_i)\le m\)

接下来思考怎样求符合条件的 \(\{c_1,c_2,\cdots,c_n\}\) 的个数。注意到 \(n\) 很小,值域也很小,因此考虑数位 DP,考虑从低到高逐位确定 \(c_i\) 每一位的值,记 \(dp_{d,px,py,nx,ny,p,q}\) 表示当前确定了最低的 \(d\) 位,当前为正的 \(x_i\) 的 \(\sum c_ix_i\) 产生了 \(px\) 的进位,当前为负的 \(x_i\) 的 \(\sum c_i(-x_i)\) 产生了 \(nx\) 的进位,当前为正的 \(y_i\) 的 \(\sum c_iy_i\) 产生了 \(py\) 的进位,当前为负的 \(x_i\) 的 \(\sum c_i(-y_i)\) 产生了 \(ny\) 的进位,当前 \(\sum\limits_{x_i>0} c_ix_i\) 的后 \(d\) 位是否 \(\le m\) 的后 \(d\) 位,当前 \(\sum\limits_{y_i>0} c_iy_i\) 的后 \(d\) 位是否 \(\le m\) 的后 \(d\) 位的符合条件的 \(\{c_i\}\) 的个数,转移就枚举这 \(n\) 个数第 \(d+1\) 位的值即可。

复杂度 \(20^4·2^5·\log m\),可以通过。写成记忆化搜索的形式可能会跑得快一点。

总结:看到求 \(\sum\limits_{i=1}^na_ic_i=X\) 的 \(\{c_i\}\) 的组数,并且 \(n,a_i\) 都很小而 \(X\) 很大的题目可以想到数位 DP,类似的还有这个题

const int MOD=998244353;
int n,m,x[7],y[7],dp[34][23][23][23][23][2][2];
void add(int &x,int v){((x+=v)>=MOD)&&(x-=MOD);}
int chk(int dm,int dn,int ori){
if(dm^dn) return (dn<dm)?0:1;
return ori;
}
int calc(int p,int ps_x,int ps_y,int ng_x,int ng_y,int xm,int ym){
if(p==30) return (!ps_x&&!ps_y&&!ng_x&&!ng_y&&!xm&&!ym);
if(~dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym]) return dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym];
int d=m>>p&1;dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym]=0;
for(int s=0;s<(1<<n);s++){
int tps_x=ps_x,tps_y=ps_y,tng_x=ng_x,tng_y=ng_y;
for(int i=1;i<=n;i++) if(s>>(i-1)&1){
(x[i]>0)?(tps_x+=x[i]):(tng_x-=x[i]);
(y[i]>0)?(tps_y+=y[i]):(tng_y-=y[i]);
} int d_px=tps_x&1,d_py=tps_y&1,d_nx=tng_x&1,d_ny=tng_y&1;
if(d_px==d_nx&&d_py==d_ny)
add(dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym],
calc(p+1,tps_x>>1,tps_y>>1,tng_x>>1,tng_y>>1,chk(d,d_px,xm),chk(d,d_py,ym)));
} return dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
memset(dp,-1,sizeof(dp));
printf("%d\n",(calc(0,0,0,0,0,0,0)-1+MOD)%MOD);
return 0;
}

Codeforces 1290F - Making Shapes(数位 dp)的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces Gym 100231L Intervals 数位DP

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description Start with an integer, N0, ...

  3. Codeforces #55D-Beautiful numbers (数位dp)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  4. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  5. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  6. CodeForces 628D Magic Numbers (数位dp)

    题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...

  7. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  8. Codeforces 981 D.Bookshelves(数位DP)

    Codeforces 981 D.Bookshelves 题目大意: 给n个数,将这n个数分为k段,(n,k<=50)分别对每一段求和,再将每个求和的结果做与运算(&).求最终结果的最大 ...

  9. codeforces 55D. Beautiful numbers 数位dp

    题目链接 一个数, 他的所有位上的数都可以被这个数整除, 求出范围内满足条件的数的个数. dp[i][j][k], i表示第i位, j表示前几位的lcm是几, k表示这个数mod2520, 2520是 ...

随机推荐

  1. 这部分布式事务开山之作,凭啥第一天预售就拿下当当新书榜No.1?

    大家好,我是冰河~~ 今天,咱们就暂时不聊[精通高并发系列]了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作--<深入理解分布式事务:原理与实战>一书 ...

  2. javascript-原生-函数

    本节呢讲解js的函数部分,js函数部分总共分为两大类:1.自定义函数.2.系统函数 说白了,系统函数就是js自己内置的函数,其他的都属于自定义函数. 1.自定义函数 函数是完成指定功能的程序段,可以反 ...

  3. Git: 搭建一个本地私人仓库

    Git: 搭建一个本地私人仓库 寝室放个电脑.实验室也有个电脑 为进行数据同步,充分利用实验室的服务器搭建了个本地私人仓库 1. 安装流程 当然首先保证服务器上与PC机上都已经安装了可用的Git 在P ...

  4. the Agiles Scrum Meeting 6

    会议时间:2020.4.14 20:00 1.每个人的工作 今天已完成的工作 增量组:开发广播正文展开收起功能 issues:增量组:广播正文展开收起功能实现 完善组:修复冲刺部分的bug issue ...

  5. 国产Linux服务器-Jexus的初步使用

    题记:年末研究了一些关于Net跨平台的东西,没错,就是Jexus,就是Windows下面的IIS. 官网:https://www.jexus.org/ 先看看官网的解释再说其他的问题,Jexus就是L ...

  6. js fetch异步请求使用详解

    目录 认识异步 fetch(url) response.json() 结合async和await 异常处理 post请求 认识异步 首先我们得明白请求是一个异步的过程. 因为请求需要时间向服务器发送请 ...

  7. 关于linux的fork的一点学习总结

    最近操作系统的实验要用到fork,于是去搜索了一下资料,很幸运地在博客中找到一篇深度好文: http://blog.csdn.net/jason314/article/details/5640969 ...

  8. 反转单词顺序列 牛客网 剑指Offer

    反转单词顺序列 牛客网 剑指Offer 题目描述 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但 ...

  9. Python import urllib2 ImportError: No module named 'urllib2'

    python3 import urllib2 import urllib2 ImportError: No module named 'urllib2' python3.3里面,用urllib.req ...

  10. js实现日期格式化封装-八种格式

    封装一个momentTime.js文件,包含8种格式. 需要传两个参数: 时间戳:stamp 格式化的类型:type, 日期补零的方法用到es6语法中的padStart(length,'字符'): 第 ...