CosId 通用、灵活、高性能的分布式 ID 生成器

介绍

CosId 旨在提供通用、灵活、高性能的分布式系统 ID 生成器。 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS 性能:409W/s JMH 基准测试)、RedisIdGenerator (单机 TPS 性能(步长 1000):3687W+/s JMH 基准测试)。

更新内容(1.0.3)

  • 变更:修改 cosid-redis 为可选依赖(spring-boot-starter-cosid)。
  • 修复:导出 MachineId 实例失败(spring-boot-starter-cosid)。
  • 增强:RedisMachineIdDistributor/RedisIdGenerator 支持 Redis-Cluster 模式。

SnowflakeId

SnowflakeId 使用 Long (64 bits) 位分区来生成 ID 的一种分布式 ID 算法。

通用的位分配方案为:timestamp (41 bits) + machineId (10 bits) + sequence (12 bits) = 63 bits 。

  • 41 位 timestamp = (1L<<41)/(1000/3600/365) 约可以存储 69 年的时间戳,即可以使用的绝对时间为 EPOCH + 69 年,一般我们需要自定义 EPOCH 为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
  • 10 位 machineId = (1L<<10) = 1024 即相同业务可以部署 1024 个副本 (在 Kubernetes 概念里没有主从副本之分,这里直接沿用 Kubernetes 的定义) 实例,一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。
  • 12 位 sequence = (1L<<12) * 1000 = 4096000 即单机每秒可生成约 409W 的 ID,全局同业务集群可产生 4096000*1024=419430W=41.9亿(TPS)。

SnowflakeId 设计上可以看出:

  • timestamp 在高位,所以 SnowflakeId 是本机单调递增的,受全局时钟同步影响 SnowflakeId 是全局趋势递增的。
  • SnowflakeId 不对任何第三方中间件有强依赖关系,并且性能也非常高。
  • 位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
  • 强依赖本机时钟,潜在的时钟回拨问题会导致 ID 重复。
  • machineId 需要手动设置,实际部署时如果采用手动分配 machineId,会非常低效。

CosId-SnowflakeId 主要解决 SnowflakeId 俩大问题:机器号分配问题、时钟回拨问题。 并且提供更加友好、灵活的使用体验。

MachineIdDistributor (MachineId 分配器)

目前 CosId 提供了以下三种 MachineId 分配器。

ManualMachineIdDistributor

cosid:
snowflake:
machine:
distributor:
type: manual
manual:
machine-id: 0

手动分配 MachineId

StatefulSetMachineIdDistributor

cosid:
snowflake:
machine:
distributor:
type: stateful_set

使用 KubernetesStatefulSet 提供的稳定的标识 ID 作为机器号。

RedisMachineIdDistributor

cosid:
snowflake:
machine:
distributor:
type: redis

使用 Redis 作为机器号的分发存储。

ClockBackwardsSynchronizer (时钟回拨同步器)

cosid:
snowflake:
clock-backwards:
spin-threshold: 10
broken-threshold: 2000

默认提供的 DefaultClockBackwardsSynchronizer 时钟回拨同步器使用主动等待同步策略,spinThreshold(默认值 10 毫秒) 用于设置自旋等待阈值, 当大于spinThreshold 时使用线程休眠等待时钟同步,如果超过brokenThreshold(默认值 2 秒)时会直接抛出ClockTooManyBackwardsException异常。

MachineStateStorage (机器状态存储)

public class MachineState {
public static final MachineState NOT_FOUND = of(-1, -1);
private final int machineId;
private final long lastTimeStamp; public MachineState(int machineId, long lastTimeStamp) {
this.machineId = machineId;
this.lastTimeStamp = lastTimeStamp;
} public int getMachineId() {
return machineId;
} public long getLastTimeStamp() {
return lastTimeStamp;
} public static MachineState of(int machineId, long lastStamp) {
return new MachineState(machineId, lastStamp);
}
}
cosid:
snowflake:
machine:
state-storage:
local:
state-location: ./cosid-machine-state/

默认提供的 LocalMachineStateStorage 本地机器状态存储,使用本地文件存储机器号、最近一次时间戳,用作 MachineState 缓存。

ClockSyncSnowflakeId (主动时钟同步 SnowflakeId)

cosid:
snowflake:
share:
clock-sync: true

默认 SnowflakeId 当发生时钟回拨时会直接抛出 ClockBackwardsException 异常,而使用 ClockSyncSnowflakeId 会使用 ClockBackwardsSynchronizer 主动等待时钟同步来重新生成 ID,提供更加友好的使用体验。

SafeJavaScriptSnowflakeId (JavaScript 安全的 SnowflakeId)

SnowflakeId snowflakeId=SafeJavaScriptSnowflakeId.ofMillisecond(1);

JavaScriptNumber.MAX_SAFE_INTEGER 只有 53 位,如果直接将 63 位的 SnowflakeId 返回给前端,那么会值溢出的情况,通常我们可以将SnowflakeId转换为 String 类型或者自定义 SnowflakeId 位分配来缩短 SnowflakeId 的位数 使 ID 提供给前端时不溢出。

SnowflakeFriendlyId (可以将 SnowflakeId 解析成可读性更好的 SnowflakeIdState )

cosid:
snowflake:
share:
friendly: true
public class SnowflakeIdState {

    private final long id;

    private final int machineId;

    private final long sequence;

    private final LocalDateTime timestamp;
/**
* {@link #timestamp}-{@link #machineId}-{@link #sequence}
*/
private final String friendlyId;
}
public interface SnowflakeFriendlyId extends SnowflakeId {

  SnowflakeIdState friendlyId(long id);

  SnowflakeIdState ofFriendlyId(String friendlyId);

  default SnowflakeIdState friendlyId() {
long id = generate();
return friendlyId(id);
}
}
        SnowflakeFriendlyId snowflakeFriendlyId = new DefaultSnowflakeFriendlyId(snowflakeId);
SnowflakeIdState idState = snowflakeFriendlyId.friendlyId();
idState.getFriendlyId(); //20210623131730192-1-0

RedisIdGenerator

cosid:
redis:
enabled: true
share:
offset: 0
step: 100
provider:
bizA:
offset: 10000
step: 100
bizB:
offset: 10000
step: 100

RedisIdGenerator 步长设置为 1 时(每次生成ID都需要执行一次 Redis 网络 IO 请求)TPS 性能约为 21W/s (JMH 基准测试),如果在部分场景下我们对 ID 生成的 TPS 性能有更高的要求,那么可以选择使用增加每次ID分发步长来降低网络 IO 请求频次,提高 IdGenerator 性能(比如增加步长为 1000,性能可提升到 3545W+/s JMH 基准测试)。

IdGeneratorProvider

cosid:
snowflake:
provider:
bizA:
# epoch:
# timestamp-bit:
sequence-bit: 12
bizB:
# epoch:
# timestamp-bit:
sequence-bit: 12
IdGenerator idGenerator = idGeneratorProvider.get("bizA");

在实际使用中我们一般不会所有业务服务使用同一个 IdGenerator ,而是不同的业务使用不同的 IdGenerator,那么 IdGeneratorProvider 就是为了解决这个问题而存在的,他是 IdGenerator 的容器,可以通过业务名来获取相应的 IdGenerator

Examples

CosId-Examples

安装

Gradle

Kotlin DSL

    val cosidVersion = "1.0.3";
implementation("me.ahoo.cosid:spring-boot-starter-cosid:${cosidVersion}")

Maven

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion>
<artifactId>demo</artifactId>
<properties>
<cosid.version>1.0.3</cosid.version>
</properties> <dependencies>
<dependency>
<groupId>me.ahoo.cosid</groupId>
<artifactId>spring-boot-starter-cosid</artifactId>
<version>${cosid.version}</version>
</dependency>
</dependencies> </project>

application.yaml

cosid:
namespace: ${spring.application.name}
snowflake:
enabled: true
# epoch: 1577203200000
clock-backwards:
spin-threshold: 10
broken-threshold: 2000
machine:
# stable: true
# machine-bit: 10
# instance-id: ${HOSTNAME}
distributor:
type: redis
# manual:
# machine-id: 0
state-storage:
local:
state-location: ./cosid-machine-state/
share:
clock-sync: true
friendly: true
provider:
bizA:
# timestamp-bit:
sequence-bit: 12
bizB:
# timestamp-bit:
sequence-bit: 12 # redis:
# enabled: false
# share:
# offset: 0
# step: 100
# provider:
# bizA:
# offset: 10000
# step: 100
# bizB:
# offset: 10000
# step: 100

JMH-Benchmark

  • 基准测试运行环境:笔记本开发机 ( MacBook Pro (M1) )
  • 所有基准测试都在开发笔记本上执行。
  • Redis 部署环境也在该笔记本开发机上。

SnowflakeId

Benchmark                                                    Mode  Cnt        Score   Error  Units
SnowflakeIdBenchmark.millisecondSnowflakeId_generate thrpt 4093924.313 ops/s
SnowflakeIdBenchmark.safeJsMillisecondSnowflakeId_generate thrpt 511542.292 ops/s
SnowflakeIdBenchmark.safeJsSecondSnowflakeId_generate thrpt 511939.629 ops/s
SnowflakeIdBenchmark.secondSnowflakeId_generate thrpt 4204761.870 ops/s

RedisIdGenerator

gradle cosid-redis:jmh
Benchmark                             Mode  Cnt         Score        Error  Units
RedisIdGeneratorBenchmark.step_1 thrpt 25 220218.848 ± 2070.786 ops/s
RedisIdGeneratorBenchmark.step_100 thrpt 25 3605422.967 ± 13479.405 ops/s
RedisIdGeneratorBenchmark.step_1000 thrpt 25 36874696.252 ± 357214.292 ops/s

CosId 1.0.3 发布,通用、灵活、高性能的分布式 ID 生成器的更多相关文章

  1. CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  2. CosId 1.1.0 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  3. CosId 1.1.8 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式 ID 生成器. 目前提供了三类 ID 生成器: SnowflakeId : 单机 TPS 性 ...

  4. CosId 通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  5. 分布式ID生成器(CosId)的设计与实现

    分布式ID生成器(CosId)设计与实现 CosId 简介 CosId 旨在提供通用.灵活.高性能的分布式 ID 生成器. 目前提供了俩类 ID 生成器: SnowflakeId : 单机 TPS 性 ...

  6. 分布式ID(CosId)之号段链模式性能(1.2亿/s)解析

    分布式ID(CosId)之号段链模式性能(1.2亿/s)解析 上一篇文章<分布式ID生成器(CosId)设计与实现>我们已经简单讨论过CosId的设计与实现全貌. 但是有很多同学有一些疑问 ...

  7. julia,集Python、C++、R为一体!Julia 1.0重磅发布, MIT发布史上最强科学计算编程语言?创始人独家解答11个问题

    这个编程语言的新版本之所以受到整个人工智能界的关注,最主要的原因正是其将 C 语言的速度.Ruby 的灵活.Python 的通用性前所未有地结合在一起,支持并行处理,易于学习和使用,尤其适合科学和工程 ...

  8. Spring.Net.FrameworkV3.0 版本发布了,感谢大家的支持

    Spring.Net.FrameworkV3.0 版本发布了,感谢大家的支持. Spring.Net.Framework,基于.NET的快速信息化系统开发.整合框架,为企业或个人在.NET环境下快速开 ...

  9. (转)Spring Boot 2 (九):【重磅】Spring Boot 2.1.0 权威发布

    http://www.ityouknow.com/springboot/2018/11/03/spring-boot-2.1.html 如果这两天登录 https://start.spring.io/ ...

随机推荐

  1. Spring Cloud Gateway之动态路由(数据库版)

    1.实现动态路由的关键是RouteDefinitionRepository接口,该接口存在一个默认实现(InMemoryRouteDefinitionRepository) 通过名字我们应该也知道该实 ...

  2. 25.数据结构,LinkedList ,泛型,类型通配符

    3.数据结构 数据结构是计算机存储,组织数据的方式.是指相互之间存在的一种或多种特定关系的数据元素的集合 通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率 ---------常见的数据结构 ...

  3. 重新整理 .net core 实践篇————依赖注入应用[二]

    前言 这里介绍一下.net core的依赖注入框架,其中其代码原理在我的另一个整理<<重新整理 1400篇>>中已经写了,故而专门整理应用这一块. 以下只是个人整理,如有问题, ...

  4. Spring Cloud Alibaba Nacos Config 实战

    Nacos 提供用于存储配置和其他元数据的 key/value 存储,为分布式系统中的外部化配置提供服务器端和客户端支持.使用 Spring Cloud Alibaba Nacos Config,您可 ...

  5. 使用find命令查找大文件

    使用find命令查找大文件 find命令是Linux系统管理员工具库中最强大的工具之一.它允许您根据不同的标准(包括文件大小)搜索文件和目录. 例如,如果在当前工作目录中要搜索大小超过100MB的文件 ...

  6. HTML html5 语义化标签

    什么是语义化标签 语义化标签就是具有某种含义及结构的标签,让其更容易理解和使用. HTML5 新增了一些语义化标签,如下: article article 标签装载显示一个独立的文章内容.例如一篇完整 ...

  7. linux中级之lvs配置(命令)

    一.nat模式配置 环境说明: DS:nat网卡(自动获取也可以,充当vip): 192.168.254.13 255.255.255.0 vmnet3网卡(仅主机): 172.16.100.1 25 ...

  8. 9.2-3 pstree & pgrep

    9.2 pstree:显示进程状态树     pstree命令以树形结构显示进程和进程之间的关系.     如果不指定进程的PID号,或者不指定用户名称,则会以init进程为根进程,显示系统的所有进程 ...

  9. urllib2连接超时设置

    #urllib2设置超时 #获取网页的源码 def getHtml(url,i): if i > 2: return try: req = urllib2.Request(url) time.s ...

  10. VMware Cloud Foundation 4.2 发布 - 领先的混合云平台

    VMware Cloud Foundation 4.2 | 09 FEB 2021 | Build 17559673 VMware Cloud Foundation 4.1 | 06 OCT 2020 ...