先考虑$x=y$的情况,此时即是一个平等博弈,因此考虑$sg$函数

具体的,有$sg(n)=\begin{cases}0&(n=0)\\mex(\{sg(n-i)\mid 1\le i\le n,i\ne x\})&(n\ge 1)\end{cases}$,简单计算$sg(n)$的前几项,不难发现规律$sg(n)=\lfloor\frac{n}{2x}\rfloor x+n\ mod\ x$,进而将其异或即可

(若异或和为0则先手必败,否则先手必胜)

接下来,不妨假设$x>y$且$a_{1}\le a_{2}\le ...\le a_{n}$,此时再分类讨论:

1.若$a_{n}<y$,显然限制没有意义,仍是一个平等博弈,并且有$sg(n)=n$

2.若$a_{n}\ge y$,此时先手必胜,证明如下——

对其进行归纳($n$和$\{a_{i}\}$的字典序),并对此分类讨论:

1.若$n=1$或$a_{n-1}<y$,则总存在$(i,z)$满足$1\le i\le n$且$0\le z<a_{i}$,使得若$a_{i}=z$则$\bigoplus_{i=1}^{n}a_{i}=0$,那么再对$(i,z)$分类讨论——

a.若$1\le i<n$或$i=n$且$z\ne a_{n}-x$,那么将第$i$堆取到$z$个

b.若$i=n$且$z=a_{n}-x$,那么将第$n$堆取到$z+y$个

不论是哪一种情况,后手操作后若$a_{n}\ge y$由归纳假设先手必胜,否则必然异或和非0(第一种情况异或和初始为0且必然变化,第二种情况只能在第$n$堆中取$y$个)同样先手必胜

2.若$n\ge 2$且$a_{n-1}\ge y$,再分类讨论:

a.若$n\ge 3$或$a_{n}>y$,那么先手只需要在第$n-2$或第$n$堆中取一个,后手不可能同时使$a_{n-1},a_{n}<y$,那么由归纳假设先手必胜

b.若$n=2$且$a_{n}=y(=a_{n-1})$,那么先手只需要取完第$n-1$堆,之后后手不能取完第$n$堆,后手操作后先手再取完第$n$堆即可

类似地,对于$x<y$的情况,再分类讨论:

1.若$a_{n}<x$,同样为$sg(n)=n$的平等博弈

2.若$a_{n}\ge x$,此时先手操作后必然要使$\max_{i=1}^{n}a_{i}<x$(否则由之前的结论后手必胜),那么也即是要$n=1$或$a_{n-1}<x$,进而要保证异或和为0,即要求$S<x$且$S\ne a_{n}-x$(其中$S=\bigoplus_{i=1}^{n-1}a_{i}$)

综上,时间复杂度为$o(n\log n)$(排序),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 int t,n,x,y,ans,a[N];
5 int main(){
6 scanf("%d",&t);
7 while (t--){
8 scanf("%d%d%d",&n,&x,&y);
9 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
10 ans=0;
11 if (x==y){
12 for(int i=1;i<=n;i++)ans^=a[i]/(x<<1)*x+a[i]%x;
13 if (ans)printf("Jslj\n");
14 else printf("yygqPenguin\n");
15 continue;
16 }
17 sort(a+1,a+n+1);
18 if (a[n]<min(x,y)){
19 for(int i=1;i<=n;i++)ans^=a[i];
20 if (ans)printf("Jslj\n");
21 else printf("yygqPenguin\n");
22 continue;
23 }
24 if (x>y)printf("Jslj\n");
25 else{
26 if ((n==1)||(a[n-1]<x)){
27 for(int i=1;i<n;i++)ans^=a[i];
28 if ((ans<x)&&(ans!=a[n]-x))printf("Jslj\n");
29 else printf("yygqPenguin\n");
30 }
31 else printf("yygqPenguin\n");
32 }
33 }
34 return 0;
35 }

[hdu7022]Jsljgame的更多相关文章

随机推荐

  1. 洛谷4847 银河英雄传说(LCT+LCSPLAY)

    QWQ硬是把一个\(splay\)好题,做成了\(LCT\) 首先,根据题目性质,我们可以发现序列之间是具有前后性质的. 那么,我们就不可以进行\(makeroot\)等操作. 我们定义\(findr ...

  2. 2020.12.14--Codeforces Round #104 (Div.2)补题

    C - Lucky Conversion CodeForces - 146C Petya loves lucky numbers very much. Everybody knows that luc ...

  3. Boost Started on Unix Variants

  4. 用C++实现的数独解题程序 SudokuSolver 2.4 及实例分析

    SudokuSolver 2.4 程序实现 本次版本实现了 用C++实现的数独解题程序 SudokuSolver 2.3 及实例分析 里发现的第三个不完全收缩 grp 算法 thirdGreenWor ...

  5. jq问题

    <div id="box"> <p> <span>A</span> <span>B</span> </ ...

  6. 使用Google Fonts注意事项

    Google Fonts是一个字体嵌入服务库. 这包括免费和开源字体系列.用于浏览库的交互式 Web 目录以及用于通过 CSS 和 Android 使用字体的 API. Google 字体库中的流行字 ...

  7. 第5次 Beta Scrum Meeting

    本次会议为Beta阶段第6次Scrum Meeting会议 会议概要 会议时间:2021年6月6日 会议地点:「腾讯会议」线上进行 会议时长:10min 会议内容简介:对完成工作进行阶段性汇报:对下一 ...

  8. 聊聊 Kubernetes Pod or Namespace 卡在 Terminating 状态的场景

    这个话题,想必玩过kubernetes的同学当不陌生,我会分Pod和Namespace分别来谈. 开门见山,为什么Pod会卡在Terminationg状态? 一句话,本质是API Server虽然标记 ...

  9. 上午小测1 T1 木板 题解

    前言: WTCL,居然折磨煎蛋的性质都忘记了,WTCL. 考场上想出来了正解,就差一点就能A掉,挺难受的. 要记住一个数n可能会有一个大于\(\sqrt{n}\)的质因子..我忘记把它加进去了.... ...

  10. 你知道如何从单片机过渡到嵌入式linux需要经历那些吗?(这个亲身体验有效)

    就现在的行业发展来看只会单片机已经不吃香了并且在薪资待遇方面来看的话单片机的收入限制性太强可能工作很多年之后发现没有了成长空间,因此逐渐转到嵌入式Linux这个方向是越来越多的人的一个选择,那么接触了 ...