1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 50001
4 int t,n,m,k,ans,mu[N],vis[N],p[N];
5 void mobius(){
6 mu[1]=1;
7 for(int i=2;i<N;i++){
8 if (!vis[i]){
9 p[++p[0]]=i;
10 mu[i]=-1;
11 }
12 for(int j=1;i*p[j]<N;j++){
13 vis[i*p[j]]=1;
14 if (i%p[j])mu[i*p[j]]=-mu[i];
15 else{
16 mu[i*p[j]]=0;
17 break;
18 }
19 }
20 }
21 for(int i=1;i<N;i++)mu[i]+=mu[i-1];
22 }
23 int main(){
24 scanf("%d",&t);
25 mobius();
26 while (t--){
27 scanf("%d%d%d",&n,&m,&k);
28 n/=k;
29 m/=k;
30 ans=0;
31 for(int i=1,j;i<=min(n,m);i=j+1){
32 j=min(n/(n/i),m/(m/i));
33 ans+=(mu[j]-mu[i-1])*(n/i)*(m/i);
34 }
35 printf("%d\n",ans);
36 }
37 }

[bzoj1101]Zap的更多相关文章

  1. Bzoj1101 Zap(莫比乌斯反演)

    题面 Bzoj 题解 先化式子 $$ \sum_{x=1}^a\sum_{y=1}^b\mathbf f[gcd(x,y)==d] \\ = \sum_{x=1}^a\sum_{y=1}^b\sum_ ...

  2. Bzoj 2190 仪仗队(莫比乌斯反演)

    题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm&g ...

  3. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  4. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  5. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  6. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  7. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  8. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  9. BZOJ1101 & 洛谷3455:[POI2007]ZAP——题解

    https://www.luogu.org/problemnew/show/3455#sub http://www.lydsy.com/JudgeOnline/problem.php?id=1101 ...

随机推荐

  1. Data Interoperability Tools

    这里的工具貌似没有对应函数~~~

  2. redis学习笔记-02 list列表类型命令

    一.lpush key value1 value2 value3 value4(命令将一个或多个值插入到列表头部. 如果 key 不存在,一个空列表会被创建并执行 LPUSH 操作) lpush k1 ...

  3. CompleteFuture实现简单的任务编排实践

    CompleteFuture实现简单的任务编排实践 一:前言 ​ CompleteFuture是java8 新提供的API,是对函数式编程思想的体现,提供了很多的对于函数式编程支持.不止有同步处理功能 ...

  4. javascriptRemke之类的继承

    前言:es6之前在js中要实现继承,就必须要我们程序员在原型链上手动继承多对象的操作,但是结果往往存在漏洞,为解决这些问题,社区中出现了盗用构造函数.组合继承.原型式继承.寄生式继承等一系列继承方式, ...

  5. vue.$nextTick实现原理

    源码: const callbacks = [] let pending = false function flushCallbacks () { pending = false const copi ...

  6. F1英国大奖赛-银石赛道地图及弯道

    背景 今天晚上(2020-08-02)是今年英国大奖赛的正赛.刚好了解了一下赛道地图.记录一下,明年就不用到处找了. 简介 银石赛道(Silverstone Circuit)由一个废弃的空军基地改建, ...

  7. Jmeter之BeanShell 断言

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15436864.html 博客主页:https://www.cnblogs.com/testero ...

  8. Git浅析

    Git浅析 索引 Git的常用命令 GitHub的使用 Git版本创建和回退 Git的工作区和暂存区 Git分支管理 1-Git的常用命令 01.创建一个版本库--进入相应的目录 git init 可 ...

  9. [对对子队]会议记录4.16(Scrum Meeting7)

    今天已完成的工作 何瑞 ​ 工作内容:完成成本和分数系统 ​ 相关issue:实现成本和分数系统的逻辑 ​ 相关签入:4.16签入1 吴昭邦 ​ 工作内容:对接流水线和成本和分数系统 ​ 相关issu ...

  10. DDL_Killer Alpha版本 Bug集中反馈处

    本博客用于DDL_Killer Alpha版本的Bug集中反馈. 您可以在本博客的下方评论区处留言,反馈您在使用DDl_Killer的过程中遇到的问题,以帮助我们更好的改进本产品. 我们会尽快修复找到 ...