有这么一个游戏:
  写出一个1~N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置。下面是一个例子:
  3  1  2  4
   4  3  6
    7  9
     16
最后得到16这样一个数字。
  现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列a[i],为1~N的一个排列。若答案有多种可能,则输出字典序最小的那一个。 (n<12)

首先我们通过手算及暴力程序应该可以发现

设 sum 为最后一行的值

总共有 1 行 则 sum=a1*1

总共有 2 行 则 sum=a1*1+a2*1

总共有 3 行 则 sum=a1*1+a2*2+a3*1

总共有 4 行 则 sum=a1*1+a2*3+a3*3+a4*1

不难发现sum等于二项式定理中的系数乘上第n个数

所以对于这题我们只需要先预处理出二项式定理的系数 再对1~n进行dfs排列 适当加上一个剪枝就能AC

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long a[13],n,m,sum,b[13],last_num[13];
bool k[13],p;
void dfs(long long now,long long num,long long now_num)//当前位置 到当前位置的总和 当前位置的数值
{
if(p)//取到解就不必再继续dfs
return ;
if(now==n)
{
if(num==m)
{
for(long long i=1;i<=n;i++)
printf("%lld ",a[i]);
p=1;
return ;
}
else
{
k[now_num]=0;
return ;
}
} for(long long i=1;i<=n;i++)
{
if(!k[i])
{
if(num+i*b[now+1]>m)//一个小剪枝 如果总和大于所要的解则不再扩展
{
k[now_num]=0;
return;
}
else
{
k[i]=1;
a[now+1]=i;
dfs(now+1,num+i*b[now+1],i);
k[i]=0;//根据函数定义的回溯法求排列
}
}
}
}
int main()
{
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
b[i]=1;
for(long long j=i-1;j>=1;j--)
b[j]+=b[j-1];
}
for(long long i=n;i>=1;i--)
{
last_num[i]=b[i]+last_num[i+1];
}
dfs(0,0,0);
}

n<12

对于原题中的n<12 我们的总和超过m就剪枝的做法是完全可以的

但教练提了一个n<20 的问题 这时一个剪枝就显得不足了(只能拿20分)

我们可以用IDA*的算法

即在dfs扩展时计算未来可能的代价 如果代价超出能忍受的范围则剪枝

我们考虑下面三个剪枝

剪枝一:
计算当前的“累加和”,若超出Sum,则没必要继续搜索

剪枝二:
计算当前的“累加和”+“未来的最小累加和”,若超出Sum,则没必要继续搜索

剪枝三:
计算当前的“累加和”+“未来的最大累加和”,若小于Sum,则没必要继续搜索

其中剪枝 二 三 就是对未来的一个估价函数

#pragma GCC optimize(2)
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long a[21],n,m,sum,b[21],sort_num[21],pai[21],minm,maxm;
bool k[21],p,c;
void yugu(long long now)
{
pai[0]=0;
sort_num[0]=0;
maxm=0;
minm=0;
for(long long i=n/2+1;i>=now;i--)
pai[++pai[0]]=b[i];
for(long long i=n/2+2;i<=n;i++)
pai[++pai[0]]=b[i];
for(long long i=1;i<=n;i++)
{
if(!k[i])
sort_num[++sort_num[0]]=i;
}
for(long long i=1;i<=sort_num[0];i++)
{
minm+=sort_num[i]*pai[i];
maxm+=sort_num[i]*pai[sort_num[0]-i+1];
}
}
void dfs(long long now,long long num)
{ if(c)
return ;
if(num>m)
return ;
yugu(now+1);//进行预估代价
if(num+maxm<m||num+minm>m)//判断是否可行剪枝
return ;
if(now==n)
{
if(num==m)
{
for(long long i=1;i<=n;i++)
printf("%lld ",a[i]);
c=1;
return ;
}
else
return ;
}
for(long long i=1;i<=n;i++)
{ if(!c)
if(!k[i])
{
if(num+i*b[now+1]>m)
continue;
else
{
k[i]=1;
a[now+1]=i;
dfs(now+1,num+i*b[now+1]);
k[i]=0;
}
}
}
}
int main()
{
// freopen("szyx.in","r",stdin);
// freopen("szyx.out","w",stdout);
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
b[i]=1;
for(long long j=i-1;j>=1;j--)
b[j]+=b[j-1];
}
dfs(0,0);
return 0;
}

启发式搜索 IDA*

【2020-8-21】【数字游戏】【启发式搜索IDA*】的更多相关文章

  1. Python代码实现猜数字游戏

    1 # -*- coding:utf-8 -*- 2 # 作者:IT小学生蔡坨坨 3 # 时间:2020/12/9 23:02 4 5 # 猜数字游戏: 6 # 代码中生成一个随机整数. 7 # 然后 ...

  2. NOIP2003pj数字游戏[环形DP]

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  3. [Noip2003 PJ] 数字游戏

    Description & Range 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有 ...

  4. codevs 1085 数字游戏 dp或者暴搜

    1085 数字游戏 2003年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB     题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单 ...

  5. Poj 2328 Guessing Game(猜数字游戏)

    一.题目大意 两个小盆友玩猜数字游戏,一个小盆友心里想着1~10中的一个数字,另一个小盆友猜.如果猜的数字比实际的大,则告诉他"too high",小则"too low& ...

  6. Codevs 1085 数字游戏

    1085 数字游戏 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 丁丁最近沉迷于一个数字游戏之中 ...

  7. 【dp】数字游戏&寒假祭

    区间DP 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按 ...

  8. luogu P1043 数字游戏

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  9. 数字游戏(codevs 1085)

    题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共 ...

随机推荐

  1. SpringCloud微服务实战——搭建企业级开发框架(七):自定义通用响应消息及统一异常处理

      平时开发过程中,无可避免我们需要处理各类异常,所以这里我们在公共模块中自定义统一异常,Spring Boot 提供 @RestControllerAdvice 注解统一异常处理,我们在GitEgg ...

  2. Beta Scrum Meeting汇总

    第0次Alpha Scrum Meeting 第1次Alpha Scrum Meeting 第2次Alpha Scrum Meeting 第3次Alpha Scrum Meeting 第4次Alpha ...

  3. Asp.CAore往Vue前端传application/octet-stream类型文件流

    题外话:当传递文件流时要确定文件流的类型,但也有例外就是application/octet-stream类型,主要是只用来下载的类型,这个类型简单理解意思就是通用类型类似 var .object.ar ...

  4. 零基础学习C语言字符串操作总结大全

    本篇文章是对C语言字符串操作进行了详细的总结分析,需要的朋友参考下 1)字符串操作 strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, ...

  5. 字符串与模式匹配算法(六):Needleman–Wunsch算法

    一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...

  6. [WPF] 在 Windows 11 中处理 WindowChrome 的圆角

    1. Windows 11 的圆角 在直角统治了微软的 UI 设计多年以后,微软突然把直角骂了一顿,说还是圆角好看,于是 Windows 11 随处都可看到圆角设计.Windows 11 使用 3 个 ...

  7. zabbix web管理页面 中文乱码问题

    1.在自己电脑上找下图文件,C:\Windows\Fonts 2.上传到 /usr/share/zabbix/assets/fonts/ 目录下 可以看到 graphfont.ttf 是 /etc/a ...

  8. 动手个性化设置自己的 IntelliJ IDEA

    前言 IDEA 是一个智能开发工具,每个开发者的使用习惯不同,如何个性化自己的IDEA? 我们可以通过 Settings 功能来设置. Settings文件是 IDEA 的配置文件,通过它可以设置主题 ...

  9. index 首页

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  10. Spring Cloud Alibaba 使用Feign进行服务消费

    为什么使用Feign? Feign可以把Rest的请求进行隐藏,伪装成类似SpringMVC的Controller一样.你不用再自己拼接url,拼接参数等等操作,一切都交给Feign去做. 使用Fei ...