Atcoder rc122-c Calculator 斐波那契
传送门
题解
先说结论: 任意正整数可以拆分成若干个斐波那契数
斐波那契数列: 1 1 2 3 5 8 13 21 34
例 17 = 13 + 3 + 1
看上去是对的,怎么证明呢?
首先假如每一个斐波那契数可以重复多次,那么显然成立(因为可以重复使用\(1\)来构成)
进一步 因为\(f_{x} = f_{x-1} + f_{x-2}\), \(f_{x-1} > f_{x-2}\) 所以 \(f_{x} < 2f_{x-1}\)
假设我们使用了两次\(f_{x-1}\), 那么我们可以使用一次类似进位的操作把他进成\(f_{x}\)(剩下的递归构造)
这样一旦有重复的我们就进位,最后可以得到一个不重复的子数列
也就是说 任意正整数可以拆分成若干个斐波那契数的和
(我把这玩意称作斐波那契进制数?
好了,回到我们这道题目上来, 不难发现反复进行3,4操作实际上就是在计算斐波那契数列
那么问题来了我们可以通过这个方式来得到一个斐波那契数,但是怎么才能得到若干个斐波那契数的和呢
来看看,我们让第三个斐波那契数加1(其实就是在计算过程中使用1, 2操作
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |
1 | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 |
+0 | +0 | +1 | +2 | +3 | +5 | +8 | +13 | +21 | +34 |
容易发现我们在第三项加一,后面增加的数又构成了斐波那契数列。
对, 就是你想的那样, 我们想要让x最终变成76 (55 + 34)的话, 就直接在第三项计算完之后调用操作1/2,让他加一,这样在计算到55时,就会加34, 也就是 55 + 34 = 76;
好了,剩下的就只有推式子和实现了。
void pre(){
f[0]=0, f[1]=1;
for(int i=2; i<=100; i++) f[i] = f[i-1] + f[i-2];
}
int main(){
a=read();
pre();
n=100;
while(f[n] > a) n--;
for(int i=n; i>0; i--){
if(a>=f[i]){
v[n-i+1] = 1;
a -= f[i];
}
}
int ans = 0;
cout << 130 << endl;
int it = (n%2);
for(int i=1; i<=n; i++){
if(i != 1){
ans++;
cout << it?3:4 << endl;
}
if(v[i]){
ans++;
cout << it?1:2 << endl;
}
it = !it;
}
for(int i=ans; i<130; i++) cout << 4 << endl;
return 0;
}
Atcoder rc122-c Calculator 斐波那契的更多相关文章
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- Ural 1225. Flags 斐波那契DP
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
随机推荐
- LA3135简单多路归并(优先队列)
题意: 有N个任务,每个任务都有自己的时间间隔(就是每t秒请求执行一次)和任务id,这n个任务公用一个cpu,每次我们都执行时间靠前的,如果相同时间内有多个任务,就执行任务id小的,要求模 ...
- postgresql高级应用之合并单元格
postgresql高级应用之合并单元格 转载请注明出处https://www.cnblogs.com/funnyzpc/p/14732172.html 1.写在前面✍ 继上一篇postgresql高 ...
- (Py练习)判断101-200之间的素数个数并输出
判断素数的方法之一:用一个数分别去除以2到squrt(这个数),如果能被整除,则不是素数. import math h = 0 leap = 1 for m in range(101, 201): k ...
- Ubuntu部署项目
一.Ubuntu目录结构 目录 说明 bin 存放二进制可执行文件(ls,cat,mkdir等) .exe== boot 存放用于系统引导时使用的各种文件 开机引导 dev 用于存放设备文件 打印机啥 ...
- VS2017报错 由#define后的分号引发的【“ 应输入“)】
其实并不是第十行分号出现了问题,而是由于在宏定义后面加了分号,修改成这样即可 一开始竟然没看出来--甚至以为是VS中出现"宏可以转换为constexpr"问题--下次要仔细--
- Java_常用类API之一
Math类 Math类中包含一些对数据进行数学运算的方法,而该类中的方法全都是静态的.像这样的类称之为工具类. 1 public static int abs(int a) 2 对一个数据求绝对值 3 ...
- 基于虹软人脸识别,实现RTMP直播推流追踪视频中所有人脸信息(C#)
前言 大家应该都知道几个很常见的例子,比如在张学友的演唱会,在安检通道检票时,通过人像识别系统成功识别捉了好多在逃人员,被称为逃犯克星:人行横道不遵守交通规则闯红灯的路人被人脸识别系统抓拍放在大屏上以 ...
- chardet模块
import chardet chardet.detect(f.read())检测哪种编码
- LVM 相关知识
LVM 相关知识 一.示例图 二.概念 名词 全称 释义 PV Physical Volume 物理硬盘.硬盘分区或者RAID磁盘阵列,先要创建pv VG Volume Group 卷组建立在物理卷之 ...
- Hive 默认分隔符
引言 Hive 中的默认分隔符是 ^A (\001) ,这是一种特殊的分隔符,使用的是 ASCII 编码的值,键盘是打不出来的 查看 Hive 默认分隔符文件 Linux 上的文件 以 \001 作为 ...