传送门


题解


先说结论: 任意正整数可以拆分成若干个斐波那契数

斐波那契数列: 1 1 2 3 5 8 13 21 34

例 17 = 13 + 3 + 1

看上去是对的,怎么证明呢?

首先假如每一个斐波那契数可以重复多次,那么显然成立(因为可以重复使用\(1\)来构成)

进一步 因为\(f_{x} = f_{x-1} + f_{x-2}\), \(f_{x-1} > f_{x-2}\) 所以 \(f_{x} < 2f_{x-1}\)

假设我们使用了两次\(f_{x-1}\), 那么我们可以使用一次类似进位的操作把他进成\(f_{x}\)(剩下的递归构造)

这样一旦有重复的我们就进位,最后可以得到一个不重复的子数列

也就是说 任意正整数可以拆分成若干个斐波那契数的和

(我把这玩意称作斐波那契进制数?

好了,回到我们这道题目上来, 不难发现反复进行3,4操作实际上就是在计算斐波那契数列

那么问题来了我们可以通过这个方式来得到一个斐波那契数,但是怎么才能得到若干个斐波那契数的和呢

来看看,我们让第三个斐波那契数加1(其实就是在计算过程中使用1, 2操作

1 2 3 4 5 6 7 8 9 10
1 1 2 3 5 8 13 21 34 55
1 1 3 4 7 11 18 29 47 76
+0 +0 +1 +2 +3 +5 +8 +13 +21 +34

容易发现我们在第三项加一,后面增加的数又构成了斐波那契数列。

对, 就是你想的那样, 我们想要让x最终变成76 (55 + 34)的话, 就直接在第三项计算完之后调用操作1/2,让他加一,这样在计算到55时,就会加34, 也就是 55 + 34 = 76;

好了,剩下的就只有推式子和实现了。

void pre(){
f[0]=0, f[1]=1;
for(int i=2; i<=100; i++) f[i] = f[i-1] + f[i-2];
} int main(){
a=read();
pre(); n=100;
while(f[n] > a) n--; for(int i=n; i>0; i--){
if(a>=f[i]){
v[n-i+1] = 1;
a -= f[i];
}
} int ans = 0;
cout << 130 << endl; int it = (n%2);
for(int i=1; i<=n; i++){ if(i != 1){
ans++;
cout << it?3:4 << endl;
} if(v[i]){
ans++;
cout << it?1:2 << endl;
}
it = !it;
} for(int i=ans; i<130; i++) cout << 4 << endl;
return 0;
}

Atcoder rc122-c Calculator 斐波那契的更多相关文章

  1. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. python迭代器实现斐波拉契求值

    斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...

  3. Ural 1225. Flags 斐波那契DP

    1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...

  4. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  5. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  6. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  7. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

  8. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  9. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

随机推荐

  1. 启动QQ时出现无法访问个人文件夹怎么决解

    找了一圈的百度,真正有用的. 在设置中进行修改. https://zhidao.baidu.com/question/2073820786837168348.html 打开设置的其中页面 你的IT管理 ...

  2. vue的快速入门【IDEA版本】

    和vscode相比,使用IDEA进行前端开发并没有那么容易,需要先进行配置 . 安装vue插件,重启idea 鼠标右键添加vue component 点击 file 打开设置 settings,展开 ...

  3. 基于texlive定制chemfig化学式转换Python服务镜像

    chemfig 据别人介绍,在绘制平面分子式,乃至化学反应式.机理图时,大家使用的基本都是ChemDraw.当然ChemDraw是一款强大的软件,无论是平面的还是立体的分子结构式都能毫不费力地绘制出来 ...

  4. C++ primer plus读书笔记——第2章 开始学习C++

    第2章 开始学习C++ 1. endl确保程序继续运行前刷新输出(将其立即显示在屏幕上),而使用"\n"不提供这样的保证,这意味着在有些系统中,有时可能在您输入信息后才会出现提示. ...

  5. HEVC学习(一) —— HM的使用

    http://blog.csdn.net/hevc_cjl/article/details/8169182 首先自然是先把这个测试模型下载下来,链接地址如下:https://hevc.hhi.frau ...

  6. OO第1.2次作业·魔鬼的三角函数化简

    多年以后,面对办公室的屏幕,我会回忆起开始肝第二周OO作业的那个遥远的下午.那时的程序是一个一两百行的符号求导,基类与接口在包里一字排开,工整的注释一望到底 谁能想到,接下来的十几个小时我要经历什么样 ...

  7. 面试侃集合 | LinkedBlockingQueue篇

    面试官:好了,聊完了ArrayBlockingQueue,我们接着说说LinkedBlockingQueue吧 Hydra:还真是不给人喘口气的机会,LinkedBlockingQueue是一个基于链 ...

  8. [刷题] PTA 7-32 说反话-加强版

    题目描述: 给定一个英语句子,各个单词之间用空格分隔.要求编写程序,将所有单词倒序输出 输入示例: Hello World Here I Come 输出示例: Come I Here World He ...

  9. [刷题] 3 Longest Substring Without Repeating Character

    要求 在一个字符串中寻找没有重复字母的最长子串 举例 输入:abcabcbb 输出:abc 细节 字符集?字母?数字+字母?ASCII? 大小写是否敏感? 思路 滑动窗口 如果当前窗口没有重复字母,j ...

  10. g77介绍 g77 是 Fortran77 的编译器。它对 Fortran 77 标准提供完备的支持,并支持 Fortran 90 和 95 的部分特性。 由于 Fortran 77 标准在数值计算中的影响力,g77 可能是应用最广的Fortran编译器。 在 GCC 4.0 之前,g77 是 GCC 的一部分,但现在,g77 已经停止开发。

    GFORTRAN 维基百科,自由的百科全书     跳到导航 跳到搜索 此条目需要扩充. (2018年11月2日)请协助改善这篇条目,更进一步的信息可能会在讨论页或扩充请求中找到.请在扩充条目后将此模 ...