hdu4990 矩阵快速幂
题意:
给你一短代码,让你优化这个代码,代码如下
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d\n",ans);
}
return 0;
},给出n,m让你输出ans <1<=n, m <= 1000000000>.
思路:
直接跑肯定TLE,这个题目我们可以推公式,如果推不出来可以直接打出来一些,然
后自己找公式,一般公式不会很复杂(复杂的自己一般不会呵呵)。
现在我们要求ai:
如果i是奇数
a[i] = a[i-1] * 2 + 1 = (a[i-2] * 2 + a[i-1]) + 1 = a[i-2]*2+a[i-1]+1
如果i是偶数
a[i] = a[i-1] * 2 = (a[i-2] * 2 + 1) + a[i-1] = a[i-2]*2+a[i-1]+1
两个公式一样,那么可以作为通式,然后就构造矩阵,之后跑快速幂就行了,矩阵也很好构
造,我构造下:
a1 a2 1 0 2 0 a2 a3 1
* 1 1 0
0 1 1
#include<stdio.h>
#include<string.h>
__int64 M; typedef struct
{
__int64 mat[5][5];
}A; A mat_mat(A a ,A b)
{
A c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= 3 ;k ++)
for(int i = 1 ;i <= 3 ;i ++)
{
if(a.mat[i][k])
for(int j = 1 ;j <= 3 ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j])%M;
}
return c;
} A quick_mat(A a ,int b)
{
A c;
memset(c.mat ,0 ,sizeof(c.mat));
c.mat[1][1] = c.mat[2][2] = c.mat[3][3] = 1;
while(b)
{
if(b&1) c = mat_mat(c ,a);
a = mat_mat(a ,a);
b >>= 1;
}
return c;
} int main ()
{
A a;
int n ,i;
while(~scanf("%d %d" ,&n ,&M))
{
a.mat[1][1] = a.mat[1][3] = a.mat[2][3] = a.mat[3][1] = 0;
a.mat[2][1] = a.mat[2][2] = a.mat[3][2] = a.mat[3][3] = 1;
a.mat[1][2] = 2;
if(n == 1)
{
printf("%d\n" ,1 % M);
continue;
}
a = quick_mat(a ,n-1);
__int64 Ans = 1 * a.mat[1][1] + 2 * a.mat[2][1] + 1 * a.mat[3][1];
printf("%I64d\n" ,Ans % M);
}
return 0;
}
hdu4990 矩阵快速幂的更多相关文章
- hdu4990矩阵快速幂
就是优化一段代码,用矩阵快速幂(刚开始想到了转移矩阵以为是错的) 在搜题解时发现了一个神奇的网站:http://oeis.org/ 用来找数列规律 的神器.... 规律就是an=an-1+2*an-2 ...
- hdu4990 Reading comprehension 矩阵快速幂
Read the program below carefully then answer the question.#pragma comment(linker, "/STACK:10240 ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
随机推荐
- LeetCode-二叉搜索树的范围和
二叉搜索树的范围和 LeetCode-938 首先需要仔细理解题目的意思:找出所有节点值在L和R之间的数的和. 这里采用递归来完成,主要需要注意二叉搜索树的性质. /** * 给定二叉搜索树的根结点 ...
- 简单的webRTC连接测试
webRTC WebRTC (Web Real-Time Communications) 是一项实时通讯技术,它允许网络应用或者站点,在不借助中间媒介的情况下,建立浏览器之间点对点(Peer-to-P ...
- centos /bin /sbin /usr/bin /usr/sbin 目录的说明
在linux下我们经常用到的四个应用程序的目录是/bin./sbin./usr/bin./usr/sbin .而四者存放的文件一般如下: bin目录: bin为binary的简写主要放置一些系 ...
- 最简要的Dubbo文档
1.Dubbo是什么? Dubbo是阿里巴巴开源的基于 Java 的高性能 RPC 分布式服务框架,现已成为 Apache 基金会孵化项目. 面试官问你如果这个都不清楚,那下面的就没必要问了. 官网: ...
- 习题3_08循环小数(JAVA语言)
package 第三章习题; import java.util.Arrays; import java.util.Scanner; /* * 输入整数a和b(0<=a<=3000,1&l ...
- 6、MyBatis教程之日志实现
7.日志实现 思考:我们在测试SQL的时候,要是能够在控制台输出 SQL 的话,是不是就能够有更快的排错效率? 如果一个 数据库相关的操作出现了问题,我们可以根据输出的SQL语句快速排查问题. 对于以 ...
- FutureTask核心源码分析
本文主要介绍FutureTask中的核心方法,如果有错误,欢迎大家指出! 首先我们看一下在java中FutureTask的组织关系 我们看一下FutureTask中关键的成员变量以及其构造方法 //表 ...
- K8S单集群桌面安装笔记【k8s-for-docker-desktop】
一.K8S集群基本的拓扑结构 二.下载 k8s-for-docker-desktop k8s桌面单集群安装,基本上选择 k8s-for-docker-desktop或者minikube两类,本文采用前 ...
- Makefile基本用法
来源 https://www.gnu.org/software/make/manual/make.pdf 简单的例子 其中的cc通过链接,间接指向/usr/bin/gcc. Makefile文件中列出 ...
- 分享一次排查CLOSE_WAIT过多的经验
关键词:TCP.CLOSE_WAIT 问题背景 某日下午有测试人员急匆匆的跑来跟我反馈:"有客户反馈供应商附件预览不了,流程阻塞,需要紧急处理",我立马精神起来,毕竟都是付费客户( ...