摘要:本文通过实际案例,说明如何按日期来对订单数据进行水平分库和分表,实现数据的分布式查询和操作。

本文分享自华为云社区《数据库分库分表Java实战经验总结 丨【绽放吧!数据库】》,作者: jackwangcumt。

我们知道,当前的应用都离不开数据库,随着数据库中的数据越来越多,单表突破性能上限记录时,如MySQL单表上线估计在近千万条内,当记录数继续增长时,从性能考虑,则需要进行拆分处理。而拆分分为横向拆分和纵向拆分。一般来说,采用横向拆分较多,这样的表结构是一致的,只是不同的数据存储在不同的数据库表中。其中横向拆分也分为分库和分表。

1 示例数据库准备

为了说清楚如何用Java语言和相关框架实现业务表的分库和分表处理。这里首先用MySQL数据库中创建两个独立的数据库实例,名字为mydb和mydb2,此可演示分库操作。另外在每个数据库实例中,创建12个业务表,按年月进行数据拆分。具体的创建表脚本如下:

CREATE TABLE `t_bill_2021_1` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`user_id` int(20) NOT NULL COMMENT '用户id',
`address_id` bigint(20) NOT NULL COMMENT '地址id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci; CREATE TABLE `t_bill_2021_2` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`user_id` int(20) NOT NULL COMMENT '用户id',
`address_id` bigint(20) NOT NULL COMMENT '地址id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
-- 省略....
CREATE TABLE `t_bill_2021_12` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`user_id` int(20) NOT NULL COMMENT '用户id',
`address_id` bigint(20) NOT NULL COMMENT '地址id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

成功执行脚本后,在MySQL管理工具中可以看到如下的示例界面:

2 分库分表实现

在Java语言下的框架中,有众多的开源框架,其中关于分库分表的框架,可以选择Apache ShardingSphere,其官网介绍说:ShardingSphere 是一套开源的分布式数据库解决方案组成的生态圈,它由 JDBC、Proxy 和 Sidecar(规划中)这 3 款既能够独立部署,又支持混合部署配合使用的产品组成。 它们均提供标准化的数据水平扩展、分布式事务和分布式治理等功能,可适用于如 Java 同构、异构语言、云原生等各种多样化的应用场景。Apache ShardingSphere 5.x 版本开始致力于可插拔架构。 目前,数据分片、读写分离、数据加密、影子库压测等功能,以及 MySQL、PostgreSQL、SQLServer、Oracle 等 SQL 与协议的支持,均通过插件的方式织入项目。官网地址为: https://shardingsphere.apache.org/index_zh.html 。

下面的示例采用Spring Boot框架来实现,相关的库通过Maven进行管理。首先给出pom.xml配置文件的定义:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.3</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.example</groupId>
<artifactId>wyd</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>wyd</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
<mybatis-plus.version>3.1.1</mybatis-plus.version>
<sharding-sphere.version>4.0.0-RC2</sharding-sphere.version>
<shardingsphere.version>5.0.0-beta</shardingsphere.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>${mybatis-plus.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>2.9.8</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>${sharding-sphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-namespace</artifactId>
<version>${sharding-sphere.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

其次,给出一个实体类,它对应于上述创建的数据库表t_bill,其定义如下:

package com.example.wyd.dao;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import java.util.Date;
@Data
@TableName("t_bill")
public class Bill {
private Long orderId;
private Integer userId;
private Long addressId;
private String status;
private Date createTime;
public void setOrderId(Long orderId) {
this.orderId = orderId;
}
public void setUserId(Integer userId) {
this.userId = userId;
}
public void setAddressId(Long addressId) {
this.addressId = addressId;
}
public void setStatus(String status) {
this.status = status;
}
public void setCreateTime(Date createTime) {
this.createTime = createTime;
}
}

映射类BillMapper定义如下:

package com.example.wyd.mapper;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.example.wyd.dao.Bill;
public interface BillMapper extends BaseMapper<Bill> { }

服务类接口定义如下:

package com.example.wyd.service;
import com.baomidou.mybatisplus.extension.service.IService;
import com.example.wyd.dao.Bill;
public interface BillService extends IService<Bill> { }

服务类接口的实现类定义如下:

package com.example.wyd.service;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.example.wyd.dao.Bill;
import com.example.wyd.mapper.BillMapper;
import org.springframework.stereotype.Service;
@Service
public class BillServiceImpl extends ServiceImpl<BillMapper, Bill> implements BillService { }

这里我们采用了MybatisPlus框架,它可以很方便的进行数据库相关操作,而无需过多写SQL来实现具体业务逻辑。通过上述定义,通过继承接口的方式,并提供实体类的定义,MybatisPlus框架会通过反射机制来根据数据库设置来生成SQL语句,其中包含增删改查接口,具体的实现我们并未具体定义。

下面定义一个自定义的分库算法,具体实现如下:

package com.example.wyd;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import java.util.Collection;
//自定义数据库分片算法
public class DBShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
//真实数据库节点
availableTargetNames.stream().forEach((item) -> {
System.out.println("actual db:" + item);
});
//逻辑表以及分片的字段名
System.out.println("logicTable:"+shardingValue.getLogicTableName()+";shardingColumn:"+ shardingValue.getColumnName());
//分片数据字段值
System.out.println("shardingColumn value:"+ shardingValue.getValue().toString());
//获取字段值
long orderId = shardingValue.getValue();
//分片索引计算 0 , 1
long db_index = orderId & (2 - 1);
for (String each : availableTargetNames) {
if (each.equals("ds"+db_index)) {
//匹配的话,返回数据库名
return each;
}
}
throw new IllegalArgumentException();
}
}

下面给出数据的分表逻辑,这个定义稍显复杂一点,就是根据业务数据的日期字段值,根据月份落入对应的物理数据表中。实现示例代码如下:

package com.example.wyd;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import java.util.Collection;
import java.util.Date;
//表按日期自定义分片
public class TableShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
//真实数据库节点
availableTargetNames.stream().forEach((item) -> {
System.out.println("actual db:" + item);
});
//逻辑表以及分片的字段名
System.out.println("logicTable:"+shardingValue.getLogicTableName()+";shardingColumn:"+ shardingValue.getColumnName());
//分片数据字段值
System.out.println("shardingColumn value:"+ shardingValue.getValue().toString());
//获取表名前缀
String tb_name = shardingValue.getLogicTableName() + "_";
//根据日期分表
Date date = shardingValue.getValue();
String year = String.format("%tY", date);
String mon =String.valueOf(Integer.parseInt(String.format("%tm", date)));
//String dat = String.format("%td", date); //也可以安装年月日来分表
// 选择表
tb_name = tb_name + year + "_" + mon;
//实际的表名
System.out.println("tb_name:" + tb_name);
for (String each : availableTargetNames) {
//System.out.println("availableTableName:" + each);
if (each.equals(tb_name)) {
//返回物理表名
return each;
}
}
throw new IllegalArgumentException();
}
}

数据的分库分表可以在Spring Boot的属性配置文件中进行设(application.properties):

server.port=8080
#########################################################################################################
# 配置ds0 和ds1两个数据源
spring.shardingsphere.datasource.names = ds0,ds1 #ds0 配置
spring.shardingsphere.datasource.ds0.type = com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds0.driver-class-name = com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.ds0.jdbc-url = jdbc:mysql://127.0.0.1:3306/mydb?characterEncoding=utf8
spring.shardingsphere.datasource.ds0.username = uname
spring.shardingsphere.datasource.ds0.password = pwd #ds1 配置
spring.shardingsphere.datasource.ds1.type = com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name = com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url = jdbc:mysql://127.0.0.1:3306/mydb2characterEncoding=utf8
spring.shardingsphere.datasource.ds1.username = uname
spring.shardingsphere.datasource.ds1.password = pwd
#########################################################################################################
# 默认的分库策略:id取模
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column = id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression = ds$->{id % 2}
#########################################################################################################
spring.shardingsphere.sharding.tables.t_bill.actual-data-nodes=ds$->{0..1}.t_bill_$->{2021..2021}_$->{1..12}
#数据库分片字段
spring.shardingsphere.sharding.tables.t_bill.database-strategy.standard.sharding-column=order_id
#自定义数据库分片策略
spring.shardingsphere.sharding.tables.t_bill.database-strategy.standard.precise-algorithm-class-name=com.example.wyd.DBShardingAlgorithm
#表分片字段
spring.shardingsphere.sharding.tables.t_bill.table-strategy.standard.sharding-column=create_time
#自定义表分片策略
spring.shardingsphere.sharding.tables.t_bill.table-strategy.standard.precise-algorithm-class-name=com.example.wyd.TableShardingAlgorithm
#########################################################################################################
# 使用SNOWFLAKE算法生成主键
spring.shardingsphere.sharding.tables.t_bill.key-generator.column = order_id
spring.shardingsphere.sharding.tables.t_bill.key-generator.type = SNOWFLAKE
spring.shardingsphere.sharding.tables.t_bill.key-generator.props.worker.id=123
#########################################################################################################
spring.shardingsphere.props.sql.show = true

最后,我们给出一个定义的Controller类型,来测试分库分表的查询和保存操作是否正确。HomeController类定义如下:

package com.example.wyd.controller;
import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.example.wyd.dao.Bill;
import com.example.wyd.service.BillService;
import org.joda.time.DateTime;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
@RestController
@RequestMapping("/api")
public class HomeController {
@Autowired
private BillService billService;
//http://localhost:8080/api/query?start=2021-02-07%2000:00:00&end=2021-03-07%2000:00:00
@RequestMapping("/query")
public List<Bill> queryList(@RequestParam("start") String start, @RequestParam("end") String end) {
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse(start);
Date date2 = sdf.parse(end);
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.ge("create_time",date)
.and(qw-> qw.le("create_time", date2)).last("limit 1,10");
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
billIPage.forEach(System.out::println);
return billIPage;
} catch (ParseException e) {
e.printStackTrace();
}
return null;
}
//http://localhost:8080/api/save?userid=999&addressId=999&status=M&date=2021-03-07%2000:00:00
@RequestMapping("/save")
public String Save(@RequestParam("userid") int userId, @RequestParam("addressId") long AddressId,
@RequestParam("status") String status
,@RequestParam("date") String strDate) {
String ret ="0";
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse(strDate);
Bill bill = new Bill();
bill.setUserId(userId);
bill.setAddressId(AddressId);
bill.setStatus(status);
bill.setCreateTime(date);
boolean isOk = billService.save(bill);
if (isOk){
ret ="1";
}
} catch (ParseException e) {
e.printStackTrace();
}
return ret;
}
}

至此,我们可以用测试类初始化一些数据,并做一些初步的数据操作测试:

package com.example.wyd;

import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.example.wyd.dao.Bill;
import com.example.wyd.dao.Order;
import com.example.wyd.service.BillService;
import com.example.wyd.service.OrderService;
import org.joda.time.DateTime;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired; import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*; public class OrderServiceImplTest extends WydApplicationTests {
@Autowired
private BillService billService;
@Test
public void testBillSave(){
for (int i = 0 ; i< 120 ; i++){
Bill bill = new Bill();
bill.setUserId(i);
bill.setAddressId((long)i);
bill.setStatus("K");
bill.setCreateTime((new Date(new DateTime(2021,(i % 11)+1,7,00, 00,00,000).getMillis())));
billService.save(bill);
}
}
@Test
public void testGetByOrderId(){
long id = 626038622575374337L; //根据数据修改,无数据会报错
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("order_id", id);
Bill bill = billService.getOne(queryWrapper);
System.out.println(bill.toString());
} @Test
public void testGetByDate(){
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse("2021-02-07 00:00:00");
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("create_time",date);
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
System.out.println(billIPage.toString());
} catch (ParseException e) {
e.printStackTrace();
} } @Test
public void testGetByDate2(){
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse("2021-02-07 00:00:00");
Date date2 = sdf.parse("2021-03-07 00:00:00");
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.ge("create_time",date)
.and(qw-> qw.le("create_time", date2));
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
billIPage.forEach(System.out::println); } catch (ParseException e) {
e.printStackTrace();
} }
}

执行上述测试,通过后会生成测试数据。

3 验证

打开浏览器,输入网址进行查询测试:http://localhost:8080/api/query?start=2021-02-07%2000:00:00&end=2021-03-07%2000:00:00

输入如下网址进行数据新增测试:http://localhost:8080/api/save?userid=999&addressId=999&status=M&date=2021-03-07%2000:00:00

通过跟踪分析,此数据落入如下的表中,SQL语句如下:

SELECT * FROM mydb2.t_bill_2021_3 LIMIT 0, 1000

这里还需要注意,ShardingSphere 还支持分布式事务,感兴趣的可以阅读官网相关资料进行学习。

点击关注,第一时间了解华为云新鲜技术~

Java实战:教你如何进行数据库分库分表的更多相关文章

  1. java 取模运算% 实则取余 简述 例子 应用在数据库分库分表

    java 取模运算%  实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中 ...

  2. 当当开源sharding-jdbc,轻量级数据库分库分表中间件

    近期,当当开源了数据库分库分表中间件sharding-jdbc. Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据 ...

  3. 数据库分库分表(sharding)系列【转】

    原文地址:http://www.uml.org.cn/sjjm/201211212.asp数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三 ...

  4. 数据库分库分表(sharding)系列

    数据库分库分表(sharding)系列     目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的 ...

  5. 分布式事务-Sharding 数据库分库分表

      Sharding (转)大型互联网站解决海量数据的常见策略 - - ITeye技术网站 阿里巴巴Cobar架构设计与实践 - 机械机电 - 道客巴巴 阿里分布式数据库服务原理与实践:沈询_文档下载 ...

  6. sharding-jdbc,轻量级数据库分库分表中间件

    Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问.Sharding-JDBC是继dubbox和ela ...

  7. php面试专题---mysql数据库分库分表

    php面试专题---mysql数据库分库分表 一.总结 一句话总结: 通过数据切分技术将一个大的MySQLServer切分成多个小的MySQLServer,既攻克了写入性能瓶颈问题,同一时候也再一次提 ...

  8. 数据库分库分表(sharding)系列(一) 拆分规则

    第一部分:实施策略 数据库分库分表(sharding)实施策略图解 1. 垂直切分垂直切分的依据原则是:将业务紧密,表间关联密切的表划分在一起,例如同一模块的表.结合已经准备好的数据库ER图或领域模型 ...

  9. 转数据库分库分表(sharding)系列(二) 全局主键生成策略

    本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表( ...

随机推荐

  1. JDBC连接MySQL、Oracle和SQL server的配置

    什么是JDBC 我们可以将JDBC看作是一组用于用JAVA操作数据库的API,通过这个API接口,可以连接到数据库,并且使用结构化查询语言(SQL)完成对数据库的查找,更新等操作. JDBC连接的流程 ...

  2. mybatis学习——properties属性实现引用配置文件

    Mybatis核心配置文件中有很多的配置项,配置文档的顶层结构如下: *注意:配置项的顺序不能颠倒,如果颠倒了它们的顺序,在MyBatis的自启动阶段会发生异常,导致程序无法运行. propertie ...

  3. Java如何利用for循环在控制台输出正方形对角线图形

    1 /* 2 利用循环在控制台输出如下正方形对角线图形 3 * * * * * * * * * * * 4 * * * * 5 * * * * 6 * * * * 7 * * * * 8 * * * ...

  4. SpringBoot 自动配置原理,翻源码看一下

    ​ 初始化一个Springboot项目,在主启动类会有这么一个注解:@SpringBootApplication,自动装配的秘密全在主启动类这个注解里面了 点进去一层会发现有三个子注解组成,分别是 @ ...

  5. 关于Kubernetes(简称K8S)的开启及基本使用,基于Docker Desktop & WSL2

    背景介绍 Kubernetes(简称k8s)已成为目前业界容器编排的事实标准,其搭配Docker可建立非常高效便捷的高可扩展.高可用应用服务架构. Kubernetes的名字来自希腊语,意思是&quo ...

  6. Windows10 上Docker 安装运行Consul

    背景简介 Consul是一种服务网格解决方案,提供具有服务发现,配置和分段功能的全功能控制平面. 这些功能中的每一个都可以根据需要单独使用,也可以一起使用以构建全服务网格. Consul需要数据平面并 ...

  7. upload-labs通关记录

    upload-labs通关记录 一句话木马解读 一般的解题步骤 或者可以直接用字典爆破一下 https://github.com/TheKingOfDuck/fuzzDicts/blob/master ...

  8. 第11章:Pod数据持久化

    参考文档:https://kubernetes.io/docs/concepts/storage/volumes/ Kubernetes中的Volume提供了在容器中挂载外部存储的能力 Pod需要设置 ...

  9. 9、SpringBoot整合之SpringBoot整合SpringSecurity

    SpringBoot整合SpringSecurity 一.创建项目,选择依赖 选择Spring Web.Thymeleaf即可 二.在pom文件中导入相关依赖 <!-- 导入SpringSecu ...

  10. nacos服务注册,ClientWorker狂刷日志的问题

    日志,启动项目就疯狂的刷ClientWorker日志 配置 本身项目中配置的依赖 nacos-discovery,nacos-config版本都是2021.1,但是编译版本是1.4.1 升级nacos ...